a AlloyDB Omni Installation Guide

Table of contents

Table of contents

Infroduction

Architecture

AlloyDB Omni components

Columnar engine

Automatic memory management

Adaptive autovacuum

AlloyDB Al/ML worker

AlloyDB Omni versus AlloyDB for PostgreSQL service on Google Cloud

Advantages of running AlloyDB Omni as a container

Plan vour AlloyDB Omni installation

Size and capacity planning

Prerequisites for running AlloyDB Omni

Hardware requirements

Software requirements

Supported storage types

Local NVMe or SAN storage

Local NVMe storage

SAN storage

Count and limit vCPUs

OOl oo NININB IoOIoniomlo I I W iwiwIN -

Container engine selection and configuration

©

SELinux

—_
o

Installation

—_
o

Install AlloyDB Omni

—
o

Create file system location for AlloyDB Omni

—
o

Create an AlloyDB Omni container

—_
N

Connect directly to an AlloyDB Omni instance

N
w

Suggested parameter changes

—
E5N

Change configuration parameters

=N
o

Install AlloyDB Omni with AlloyDB Al

—
(0]

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Introduction

AlloyDB Omni is a downloadable database software package that lets you deploy a streamlined
edition of AlloyDB for PostgreSQL in your own computing environment. The portability of
AlloyDB Omni lets it run in a wide variety of environments, including data centers, cloud-based
VM instances, and laptops.

AlloyDB Omni is well-suited to the following scenarios:

e You need a scalable and performant version of PostgreSQL, but you can't run a
database in the cloud due to regulatory or data-sovereignty requirements.

e You need a database that keeps running even when it's disconnected from the internet.

e You want to physically locate your database as close as possible to your users, in order
to minimize latency.

e You want to migrate away from a legacy database without committing to a full cloud
migration.

e You have workloads that need to run in multiple public clouds, or in hybrid
environments with private data centers and public clouds intermixed.

AlloyDB Omni doesn't include AlloyDB features that rely on operation within Google Cloud. If
you want to upgrade your project to the fully managed scaling, security, and availability
features of AlloyDB, you can migrate your AlloyDB Omni data into an AlloyDB cluster like with
any other initial data import.

AlloyDB Omni includes many of the performance improvements in AlloyDB for PostgreSQL.
AlloyDB Omni has more than twice the throughput of open source PostgreSQL on TPC-C-like
tests with HammerDB, and an improvement in response time by up to a hundred times for
TPC-H-like analytical queries. AlloyDB Omni also supports autopilot features from AlloyDB in
Google Cloud, allowing it to self-update and self-tune. These autopilot features include
automatic memory management, adaptive autovacuum, and index advisor. AlloyDB also
supports the columnar engine, which can accelerate analytical queries on large data sets by up
to 100 times.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/overview
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Architecture

AlloyDB component l [PostgreSQL component w/ AlloyDB enhancements]

Host VM / Server

AlloyDB Omni Container

Client Interface Postmaster l

[Query Parser] [Query

uery Executor
PIanner/Optimizer] [Query]

: Checkpointe
- - Adaptive AlloyDB AI/ML | WAL Writer
olumnar Engine Autovacuum Worker
[Background Writer l [Archiver]
Background
Workers Automatic Memory .
Optimizer Index Advisor WAL Preallocator Log Collector Logical Replication
Launcher
Per backend/connection memory Shared Memory
I
[
System
Memory Work mem Columnar Cache Shared Buffers Temp Buffers
maintenance work mem, etc
ﬁ Other Buffers

OS Page Cache
Host VM | Server [¢]
Components Linux Kernel + Container Runtime [

Durable Storage ‘

AlloyDB Omni components

Columnar engine

The AlloyDB columnar engine accelerates SQL query processing of scans, joins, and
aggregates by providing these components:

e Anin-memory column store that contains table and materialized-view data for selected
columns, reorganized into a column-oriented format. By default this column store
consumes 1 GB of available memory. You can change the amount of memory usable by
the column store by setting the google_columnar_engine.memory_size_in_mb
parameter in the postgresql.conf used by your AlloyDB Omni instance, see Change
configuration parameters.

e A columnar query planner and execution engine to support the use of the column store
in queries.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Automatic memory management

The automatic memory manager continuously monitors and optimizes memory consumption
across an entire AlloyDB Omni instance. This module adjusts the shared buffer cache size as
necessary based on memory pressure as you run your workloads. By default, the automatic
memory manager sets the upper limit to 80% of system memory and allocates 10% of system
memory for shared buffer cache. You can configure an upper limit for the size of the shared
buffer cache by setting the shared_buffers parameter in the postgresql.conf used by your
AlloyDB Omni instance, see Automatic memory management for more information.

Adaptive autovacuum

AlloyDB's adaptive autovacuum automatically adjusts the frequency of vacuuming and
analyzes operations based on the workload of the database. This automatic adjustment helps
the database run at peak performance, even as the workload changes, without any
interruption from the vacuum process.

AlloyDB's adaptive autovacuum uses a number of factors to determine the frequency of
vacuuming and analyze operations, which include the following:

The size of the database

The number of dead tuples in the database

The age of the data in the database

The number of transactions per second versus the estimated vacuum speed

The following are the adaptive autovacuum improvements and automatically adjusted settings
in AlloyDB:

e Dynamic vacuum resource management: Instead of using a fixed cost limit, AlloyDB
uses real-time resource statistics to adjust the vacuum workers. When the system is
busy, the vacuum process and resources are throttled. If enough memory is available,
additional memory is allocated for vacuum workers to accelerate index vacuum.

e Dynamic XID Throttling: AlloyDB automatically and continuously monitors the
progress of vacuuming and the speed of transaction ID consumption. If a risk of
transaction ID wraparound is detected, AlloyDB will begin to throttle transaction ID
consumption by slowing down transactions. AlloyDB also allocates more resources to
vacuuming so that vacuuming can catch up and return to the safe zone. During this
process, the overall transactions per second are reduced until the transaction IDs are in
the safe zone (observable as sessions waiting on "AdaptiveVacuumNewXidDelay").
When the transaction ID age increases, the vacuum workers are dynamically increased.

e Efficient vacuuming for larger tables: The default logic used to decide whether to
vacuum a table is based on table-specific statistics storedin pg_stat_all_tables

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/omni/automatic-memory-management
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

which has the dead tuple ratio. That logic works for small tables but may not work
efficiently for larger, frequently updated tables. AlloyDB has an updated scan
mechanism that helps trigger the autovacuum more often, scanning chunks of large
tables and helping remove dead tuples more efficiently.

e Log warning messages: In AlloyDB, the vacuum blockers, such as long-running
transactions, orphaned prepared transactions, or orphaned replication slots, are
detected and warnings are registered in the PostgreSQL logs so that users can handle
the cases in a timely manner.

AlloyDB Al/ML worker

The AlloyDB Al/ML worker is the core of AlloyDB Al in AlloyDB Omni. The worker provides all of
the capabilities necessary for calling VertexAl models directly from the database. The Al/ML
worker runs as a process called omni ml worker.

AlloyDB Omni versus AlloyDB for PostgreSQL service on Google Cloud

AlloyDB Omni and the fully-managed AlloyDB for PostgreSQL service on Google Cloud share
the same core components. The major difference between the two is the durable storage
layer. The storage layer of AlloyDB in the cloud is built on top of Colossus, Google’s distributed
storage system, and writes are committed by asynchronous processes that avoid the
overhead of the open source PostgresSQL checkpoint process. With AlloyDB Omni, you
choose your storage system as you would with an open source PostgreSQL database and
therefore require a technical team with system administration and DBA expertise. The
architecture of AlloyDB in the cloud provides optimizations for increased WAL performance
and read pools.

Advantages of running AlloyDB Omni as a container

Google distributes AlloyDB Omni as a container that you can run with container runtimes such
as Docker and Podman. Operationally, containers present the following advantages:
e Transparent dependency management: All necessary dependencies are bundled in
the container and tested by Google to ensure they are fully compatible with AlloyDB
Omni.
e Portability: You can confidently expect AlloyDB Omni to behave consistently across
environments.
e Better security isolation: You choose what the AlloyDB Omni container has access to
on the host machine.
e Better resource management: You can easily define the amount of compute
resources the AlloyDB Omni container should use.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Seamless patching and upgrades: Patching a container consists of simply replacing
the old image with a new one.

Plan your AlloyDB Omni installation

Size and capacity planning

Sizing a PostgreSQL environment is a multifaceted process that involves considering several
factors to ensure optimal performance, reliability, and cost-effectiveness. When migrating an
existing database the CPU and memory resources required for AlloyDB Omni are similar to
the requirements of the source database system. Plan to start with a deployment using
matching CPU, RAM and disk resources, as well as using the source system configuration as
the AlloyDB Omni baseline configuration. You might be able to reduce your resource
consumption after performing sufficient testing. Here's a breakdown of the key steps:

1. Define your workload:

Data volume: Estimate the total amount of data you'll store in PostgreSQL. Consider
both the current data and projected growth over time.

Transaction rate: Determine the expected number of transactions per second (TPS),
including reads, writes, updates, and deletes.

Concurrency: Estimate the number of concurrent users or connections accessing the

database.
Performance requirements: Define your acceptable response times for different

types of queries and operations.

2. Hardware considerations:

CPU: AlloyDB Omni benefits from multiple CPU cores, linearly scaling to 64 cores,
whereas open source PostgreSQL generally does not benefit from greater than 16
vCPUs. Consider the number of cores based on your workload's concurrency and
computation needs. Take into consideration any gains that might be present due to a
change in CPU generation or platform.
Memory: Allocate sufficient RAM for PostgreSQL's shared buffers for caching data
and working memory for query processing. The exact requirement depends on the
workload. Start with 8 GB of RAM per vCPU.
Storage:

o Type: Choose between local NVMe storage for highest performance or SAN

storage for scalability and data sharing, based on your requirements.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

o Capacity: Ensure enough storage for your data volume, indexes, WAL
(Write-Ahead Log), backups, and future growth.

o |OPS: Estimate the required input/output operations per second (IOPS) based
on your workload's read and write patterns. When running AlloyDB Omni in a
public cloud, consider the performance characteristics of your storage type to
understand if you need to increase storage capacity to meet a specific IOPS

target.

Prerequisites for running AlloyDB Omni

Hardware requirements

OS/Platform Minimum hardware Recommended hardware configuration
requirements
Linux e x86-64 or ARM CPU with e x86-64 or ARM CPU with AVX2 support or
AVX2 support ARM CPU
e 2GBof RAM e 8GB of RAM for every vCPU allocated to
e 10 GB of disk space AlloyDB Omni
e 20+ GB of disk space
MacOS e Intel CPU with AVX2 e Intel CPU with AVX2 support or M-chip

support or M-chip
e 2GB of RAM
e 10 GB of disk space

e 8GB of RAM for every vCPU allocated to
AlloyDB Omni
e 20+ GB of disk space

To install AlloyDB Omni on a cloud platform, we recommend using the following

instance types:

o On Google Cloud, we recommend n2-highmem instances.
We recommend that you use a dedicated solid-state drive (SSD) storage device for
storing your data. If you use a physical device for this purpose, we recommend

attaching it directly to the host machine.

Software requirements

OS/Platform Minimum software Recommended software configuration
requirements
Linux e Debian based OS e Debian based OS (Ubuntu, etc) or RHEL 9

(Ubuntu, etc) or RHEL 9

e Linux kernel version 6.1 or higher or any

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

e Linux kernel version 5.3 Linux kernel version older than 5.3 that
or higher has support for the MADV_COLLAPSE
e Cgroupsv2 Enabled and MADV_POPULATE_WRITE directives.
Docker Engine 20.10+ or e Cgroupsv2 Enabled
Podman 4.2.0+ e Docker Engine 25.0.0+ or Podman 5.0.0+
MacOS e Docker Desktop 4.20 or e Docker Desktop 4.30 or higher
higher

AlloyDB Omni supports the following operating systems:

e RedHat?9

e Ubuntu 22.04+
e Debian11and 12
e MacOS

Supported storage types

AlloyDB Omni supports file systems on block storage volumes within database instances.
Smaller development or trial systems may prefer to use the local file system of the host where
the container is running, but enterprise workloads should use storage that is reserved for
AlloyDB Omni instances. These storage devices can either be configured in a singleton
configuration with one disk device for each AlloyDB Omni container, or a consolidated
configuration where multiple AlloyDB Omni containers read and write from the same disk
device. This choice depends on the demands set by your database workloads.

Local NVMe or SAN storage

Both local Non-Volatile Memory Express (NVMe) storage and Storage Area Network (SAN)
storage offer distinct advantages. Choosing the right solution depends on your specific
workload requirements, budget, and future scalability needs.

The best choice depends on your needs:

e To prioritize absolute performance, choose local NVMe.

e If you need large-scale, shared storage, choose a SAN.

e If you need to balance performance and sharing, consider a SAN with NVMe over
Fabrics for faster access.

Local NVMe storage

NVMe is a high-performance protocol designed for solid-state drives (SSDs). NVMe SSDs
connect directly to the PCle bus, bypassing traditional storage controllers, to deliver
incredibly fast read and write speeds. Local NVMe storage provides the lowest latency and

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

highest throughput of any storage option. These reasons make local NVMe storage ideal for
applications that demand extremely fast data access.

Scaling local NVMe storage typically involves adding more drives to individual servers. Adding
more drives to individual servers can lead to fragmented storage pools and potential
management complexities. Local NVMe storage is not designed for easy data sharing
between multiple servers. Since local NVMe storage is local, server administrators must
protect against disk failures using hardware or software Redundant Array of Inexpensive Disks
(RAID). Otherwise, the failure of a single NVMe device will result in data loss.

SAN storage

A SAN is a dedicated storage network that connects multiple servers to a shared pool of
storage devices, often SSDs or centralized NVMe storage. While not as fast as local NVMe,
modern SANs—-especially those using NVMe over Fabrics—can still deliver excellent
performance for most enterprise workloads.

e SANs are highly scalable. You can easily add more storage capacity or performance
by adding new storage arrays or upgrading existing ones. SANs typically provide
redundancy at the storage layer, providing protection against storage media failures.

e SANs excel at data sharing. Multiple servers can access and share data stored on
the SAN, making it ideal for enterprise environments that require high availability. In
the event of a server failure, SAN storage can be presented to another server in the
datacenter, allowing for faster recovery.

Licensing

The free AlloyDB Omni Developer edition can be used to evaluate, prototype, test, develop,
and demonstrate your application, prior to production. Google licenses production
deployments of AlloyDB Omni.

Container engine selection and configuration

AlloyDB Omni is supported on both Docker and Podman, both of which can be run as root
(rootful) or in rootless mode, where the daemon and containers run as a non-root user.

The advantages of rootful containers are simplicity, optimal network performance, and increased
security by mitigating against the risk of potential vulnerabilities in the daemon and the container
runtime. The most appropriate mode for your environment depends on your requirements and
preferences.

The following instructions cover deploying a rootful AlloyDB Omni container.

Did you find this document helpful? Please send us your feedback.

https://en.wikipedia.org/wiki/Standard_RAID_levels
https://en.wikipedia.org/wiki/Standard_RAID_levels
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

SELinux

This document assumes that SELinux, when present, is configured on the AlloyDB host to
permit the AlloyDB Omni container to run, including access to the file system to be used by
AlloyDB Omni (or SELinux is set to permissive).

Installation

You can follow these steps to install and configure a single-instance setup of AlloyDB Omni. If
you are interested in a multi-instance (high availability) configuration of AlloyDB Omni, see the
High Availability Installation section of the AlloyDB Omni Configuration Guide.

Install AlloyDB Omni

Create file system location for AlloyDB Omni

Prior to creating an AlloyDB Omni instance you should decide where the AlloyDB Omni
instance system and data will be stored.

When using an existing file system create a directory for use by the AlloyDB Omni container
(as root):

Unset
mkdir -p /alloydb/<CONTAINER_NAME>/data

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your host
machine's container registry, for example, my-omni-1.

When using a dedicated device perform the following steps:

1. Create a directory on the host for where the disk will be mounted (as root):

Unset
mkdir -p /alloydb/<CONTAINER_NAME>

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

2. Create a gpt partition table with a single partition on the disk device (as root):

Unset

parted <DISK_DEVICE> mklabel gpt
parted <DISK_DEVICE> mkpart primary 0% 100%

Replace the following:
<DISK _DEVICE>: The device name assigned by the operating system to the disk.

3. Create a file system on the disk device. We recommend using the ext4 file system for
AlloyDB Omni (as root).

Unset
mkfs.ext4 -m 1 -L <CONTAINER_NAME> -F <DISK_PARTITION>

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1. This entry is used to
provide a label for the file system. The maximum length of an ext4 file system label is
16 characters.

<DISK_PARTITION>: The device name for the disk partition you will use to store the
container's data.

4. Mount the device and create an entry in the /etc/fstab file so that the disk is mounted
after a reboot (as root):

Unset

echo -e
"LABEL=<CONTAINER_NAME>\t/alloydb/<CONTAINER_NAME>\text4\tdefaults\t® 0"
| tee -a /etc/fstab

mount /alloydb/<CONTAINER_NAME>

systemctl daemon-reload

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

5. Create a data directory in the container specific file system (as root):

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Unset
mkdir /alloydb/<CONTAINER_NAME>/data

Create an AlloyDB Omni container

(as root)

Unset

docker run --name <CONTAINER_NAME> \
-e POSTGRES_PASSWORD=<NEW_PASSWORD> \
-v /alloydb/<CONTAINER_NAME>/data:/var/lib/postgresql/data \
-p <HOST_PORT>:5432 \
-d google/alloydbomni

For RHEL-based distributions, select ker.io/ le/all mni:l from the list of
images.

Replace the following:

<CONTAINER NAME>:The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

<NEW_PASSWORD>: The password assigned to the new container's postgres user
after its creation.

<HOST PORT>: The TCP post on the host machine that the container should publish
its own port 5432 to. To use the PostgreSQL default port on the host machine as well,
specify 5432.

Connect directly to an AlloyDB Omni instance

You can connect directly to your AlloyDB Omni instance on the local host using the following
command (as root):

Unset
docker exec -it <CONTAINER_NAME> psql -h localhost -U postgres

Replace the following:

Did you find this document helpful? Please send us your feedback.

http://docker.io/google/alloydbomni:latest
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

You can also connect to the database using the psql command on a client host. You are asked
to enter the password of the postgres account when connecting. This password was
provided when the container was created with the docker run command.

Unset
psql -U postgres -p <HOST_PORT> -h <IP_ADDRESS_OR_FQDN>

Replace the following:

<HOST PORT>: The TCP post on the host machine that forwards to the container's AlloyDB
Omni database.

<IP_ADDRESS_OR_FQDN>:The IP address or fully-qualified domain name of the host where
AlloyDB Omni is running

Suggested parameter changes

While parameters can vary greatly depending on the installation, in general, consider adjusting
the following parameters from the default value. This is due to the fact that PostgreSQL is used
for many purposes and the default parameters are not suitable for all applications.

The following parameters and their values are initial suggestions for modification from the
default:

Parameter Suggested Description
Value
checkpoint_timeout 1200 Allows for longer times between checkpoints.
max_wal_size 20480 20 GB of WAL logs can be written before a checkpoint

occurs. Every checkpoint causes a full page write and
imposing a reasonable checkpoint length reduces the
number of full page writes from occurring.

min_wal_size 10240 Allows the pg_wal directory to shrink to this
configuration. Allows reservation of space and also
re-use of existing wal log files.

random_page_cost 1.1 Postgres default value of 4 is only appropriate for
non-SSD type disks.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

temp_buffers 16384 Sets memory for temp tables and common table
expressions to 128MB. Further adjustment might be
needed depending on VM size.
work_mem 131072 Sets memory for hash joins and sorts to 128MB.
max_worker_processes 64
max_parallel_workers 75% of Rounded to nearest whole even number.
vCPU count
max_parallel_workers_per_gath 4 Values higher than 4 generally produce less performance
er gains.
maintenance_work_mem 2097152 Set to 2 GB (2097152) if using a 16 GB instance or larger.
Set to 1GB (1048576) on instances of less than 16 GB
memory.
max_parallel_maintenance_wor 4
kers
max_prepared_transactions 500
default_toast_compression 1z4 More performant than the default toast compression with
minimal sacrifice of space.
alloydb.enable_auto_explain on Set this to on to avoid a restart.
auto_explain.log_min_duration -1 Min duration of -1 turns the auto explain off, but will allow
a user to set in a session should auto explain need to be
used.
auto_explain.log_buffers on
auto_explain.log_nested_state on
ments
auto_explain.log_settings on
auto_explain.log_triggers on
auto_explain.log_verbose on
auto_explain.log_wal on
alloydb.enable_pg_hint_plan on Set this to on to avoid a restart.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Change configuration parameters

To modify configuration parameters or add new configuration parameters update
postgresql.conf and restart the container as follows:

1. Edit /alloydb/<CONTAINER_NAME>/data/postgresql.conf.
2. Restart <CONTAINER_NAME> (as root):

Unset
docker restart <CONTAINER_NAME>

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

An example of this is covered in the following section.

Install AlloyDB Omni with AlloyDB Al

Follow these steps if you intend to generate embeddings within the database by calling out to
Vertex Al or other Al models. These instructions are not necessary if you plan to use pgvector
or pg_scann vector indexes.

1. Create a service account with Google Cloud.
2. Create a service account key, in JSON format, and download it.

Note: Service account keys are a security risk if not managed correctly.

3. Enable Vertex Al API in the project using the following:

Unset

gcloud services enable aiplatform.googleapis.com

4. Add Vertex Al Identity and Access Management (IAM) permissions to the appropriate
project and service account:

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/iam/docs/service-accounts-create
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/iam/docs/best-practices-for-managing-service-account-keys
https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

Unset
gcloud projects add-iam-policy-binding <PROJECT_ID> \
--member="serviceAccount :<SERVICE_ACCOUNT_ID>" \
--role="roles/aiplatform.user"

Replace the following:
<PROJECT _ID>: the ID of your Google Cloud project.

<SERVICE ACCOUNT _ID>:the ID of the service account that you created in the
previous step, including the full @PROJECT ID.iam.gserviceaccount.com suffix.
For example: my-service@my-project.iam-gserviceaccount.com.

5. Copy the key to /alloydb/<CONTAINER_NAME>/private-key.json.
6. Adjust the file system permissions of the key (as root):

Unset
chown $(docker exec <CONTAINER_NAME> id -u postgres):root
/alloydb/<CONTAINER_NAME>/private-key.json
chmod 600 /alloydb/<CONTAINER_NAME>/private-key.json

7. If an existing container of the same name exists, stop and remove it (as root):

Unset
docker stop <CONTAINER_NAME>
docker rm <CONTAINER_NAME>

Replace the following:

<CONTAINER_NAME>:The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

8. Start a new AlloyDB Omni container mounting the key into the container (as root):

Unset

docker run --name <CONTAINER_NAME> \
-e POSTGRES_PASSWORD=<NEW_PASSWORD> \

-p <HOST_PORT>:5432 \

-v /alloydb/<CONTAINER_NAME>/data:/var/lib/postgresql/data \

-v
"/alloydb/<CONTAINER_NAME>/private-key.json":/etc/postgresql/private-key.json \

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

-d google/alloydbomni

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-ai-1.

<NEW_PASSWORD>: The password assigned to the new container's postgres user
after its creation.

<HOST PORT>: The TCP post on the host machine that the container should publish
its own port 5432 to. To use the PostgreSQL default port on the host machine as well,
specify 5432.

9. Update AlloyDB Omni by adding the following configuration options (as root):

Unset

echo "omni_enable_ml_agent_process = 'on'
omni_google_cloud_private_key_file_path = '/etc/postgresql/private-key.json"'" \
| tee -a /alloydb/<CONTAINER_NAME>/data/postgresql.conf

Replace the following:

<CONTAINER_NAME>:The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

10. Restart AlloyDB Omni container (as root):

Unset
docker restart <CONTAINER_NAME>

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1px2wpo03_MXzOhgefd3BmE7crczk722Mx7hkSTuF9Nk

