Sharded timestamps

If a collection contains documents with sequential indexed values, Firestore limits the write rate to 500 writes per second. This page describes how to shard a document field to overcome this limit. First, let's define what we mean by "sequential indexed fields" and clarify when this limit applies.

Sequential indexed fields

"Sequential indexed fields" means any collection of documents that contains a monotonically increasing or decreasing indexed field. In many cases, this means a timestamp field, but any monotonically increasing or decreasing field value can trigger the write limit of 500 writes per second.

For example, the limit applies to a collection of user documents with indexed field userid if the app assigns userid values like so:

  • 1281, 1282, 1283, 1284, 1285, ...

On the other hand, not all timestamp fields trigger this limit. If a timestamp field tracks randomly distributed values, the write limit does not apply. The actual value of the field does not matter either, only that the field is monotonically increasing or decreasing. For example, both of the following sets of monotonically increasing field values trigger the write limit:

  • 100000, 100001, 100002, 100003, ...
  • 0, 1, 2, 3, ...

Sharding a timestamp field

Assume your app uses a monotonically increasing timestamp field. If your app doesn't use the timestamp field in any queries, you can remove the 500 writes per second limit by not indexing the timestamp field. If you do require a timestamp field for your queries, you can work around the limit by using sharded timestamps:

  1. Add a shard field alongside the timestamp field. Use 1..n distinct values for the shard field. This raises the write limit for the collection to 500*n, but you must aggregate n queries.
  2. Update your write logic to randomly assign a shard value to each document.
  3. Update your queries to aggregate the sharded result sets.
  4. Disable single-field indexes for both the shard field and the timestamp field. Delete existing composite indexes that contain the timestamp field.
  5. Create new composite indexes to support your updated queries. The order of the fields in an index matters, and the shard field must come before the timestamp field. Any indexes that include the timestamp field must also include the shard field.

You should implement sharded timestamps only in use cases with sustained write rates above 500 writes per second. Otherwise, this is a pre-mature optimization. Sharding a timestamp field removes the 500 writes per second restriction but with the trade-off of needing client-side query aggregations.

The following examples show how to shard a timestamp field and how to query a sharded result set.

Example data model and queries

As an example, imagine an app for near real-time analysis of financial instruments like currencies, common stocks, and ETFs. This app writes documents to an instruments collection like so:

Node.js
async function insertData() {
  const instruments = [
    {
      symbol: 'AAA',
      price: {
        currency: 'USD',
        micros: 34790000
      },
      exchange: 'EXCHG1',
      instrumentType: 'commonstock',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.010Z'))
    },
    {
      symbol: 'BBB',
      price: {
        currency: 'JPY',
        micros: 64272000000
      },
      exchange: 'EXCHG2',
      instrumentType: 'commonstock',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.101Z'))
    },
    {
      symbol: 'Index1 ETF',
      price: {
        currency: 'USD',
        micros: 473000000
      },
      exchange: 'EXCHG1',
      instrumentType: 'etf',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.001Z'))
    }
  ];

  const batch = fs.batch();
  for (const inst of instruments) {
    const ref = fs.collection('instruments').doc();
    batch.set(ref, inst);
  }

  await batch.commit();
}

This app runs the following queries and orders by the timestamp field:

Node.js
function createQuery(fieldName, fieldOperator, fieldValue, limit = 5) {
  return fs.collection('instruments')
      .where(fieldName, fieldOperator, fieldValue)
      .orderBy('timestamp', 'desc')
      .limit(limit)
      .get();
}

function queryCommonStock() {
  return createQuery('instrumentType', '==', 'commonstock');
}

function queryExchange1Instruments() {
  return createQuery('exchange', '==', 'EXCHG1');
}

function queryUSDInstruments() {
  return createQuery('price.currency', '==', 'USD');
}
insertData()
    .then(() => {
      const commonStock = queryCommonStock()
          .then(
              (docs) => {
                console.log('--- queryCommonStock: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      const exchange1Instruments = queryExchange1Instruments()
          .then(
              (docs) => {
                console.log('--- queryExchange1Instruments: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      const usdInstruments = queryUSDInstruments()
          .then(
              (docs) => {
                console.log('--- queryUSDInstruments: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      return Promise.all([commonStock, exchange1Instruments, usdInstruments]);
    });

After some research, you determine that the app will receive between 1,000 and 1,500 instrument updates per second. This surpasses the 500 writes per second allowed for collections containing documents with indexed timestamp fields. To increase the write throughput, you need 3 shard values, MAX_INSTRUMENT_UPDATES/500 = 3. This example uses the shard values x, y, and z. You can also use numbers or other characters for your shard values.

Adding a shard field

Add a shard field to your documents. Set the shard field to values x, y, or z which raises the write limit on the collection to 1,500 writes per second.

Node.js
// Define our 'K' shard values
const shards = ['x', 'y', 'z'];
// Define a function to help 'chunk' our shards for use in queries.
// When using the 'in' query filter there is a max number of values that can be
// included in the value. If our number of shards is higher than that limit
// break down the shards into the fewest possible number of chunks.
function shardChunks() {
  const chunks = [];
  let start = 0;
  while (start < shards.length) {
    const elements = Math.min(MAX_IN_VALUES, shards.length - start);
    const end = start + elements;
    chunks.push(shards.slice(start, end));
    start = end;
  }
  return chunks;
}

// Add a convenience function to select a random shard
function randomShard() {
  return shards[Math.floor(Math.random() * Math.floor(shards.length))];
}
async function insertData() {
  const instruments = [
    {
      shard: randomShard(),  // add the new shard field to the document
      symbol: 'AAA',
      price: {
        currency: 'USD',
        micros: 34790000
      },
      exchange: 'EXCHG1',
      instrumentType: 'commonstock',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.010Z'))
    },
    {
      shard: randomShard(),  // add the new shard field to the document
      symbol: 'BBB',
      price: {
        currency: 'JPY',
        micros: 64272000000
      },
      exchange: 'EXCHG2',
      instrumentType: 'commonstock',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.101Z'))
    },
    {
      shard: randomShard(),  // add the new shard field to the document
      symbol: 'Index1 ETF',
      price: {
        currency: 'USD',
        micros: 473000000
      },
      exchange: 'EXCHG1',
      instrumentType: 'etf',
      timestamp: Timestamp.fromMillis(
          Date.parse('2019-01-01T13:45:23.001Z'))
    }
  ];

  const batch = fs.batch();
  for (const inst of instruments) {
    const ref = fs.collection('instruments').doc();
    batch.set(ref, inst);
  }

  await batch.commit();
}

Querying the sharded timestamp

Adding a shard field requires that you update your queries to aggregate sharded results:

Node.js
function createQuery(fieldName, fieldOperator, fieldValue, limit = 5) {
  // For each shard value, map it to a new query which adds an additional
  // where clause specifying the shard value.
  return Promise.all(shardChunks().map(shardChunk => {
        return fs.collection('instruments')
            .where('shard', 'in', shardChunk)  // new shard condition
            .where(fieldName, fieldOperator, fieldValue)
            .orderBy('timestamp', 'desc')
            .limit(limit)
            .get();
      }))
      // Now that we have a promise of multiple possible query results, we need
      // to merge the results from all of the queries into a single result set.
      .then((snapshots) => {
        // Create a new container for 'all' results
        const docs = [];
        snapshots.forEach((querySnapshot) => {
          querySnapshot.forEach((doc) => {
            // append each document to the new all container
            docs.push(doc);
          });
        });
        if (snapshots.length === 1) {
          // if only a single query was returned skip manual sorting as it is
          // taken care of by the backend.
          return docs;
        } else {
          // When multiple query results are returned we need to sort the
          // results after they have been concatenated.
          // 
          // since we're wanting the `limit` newest values, sort the array
          // descending and take the first `limit` values. By returning negated
          // values we can easily get a descending value.
          docs.sort((a, b) => {
            const aT = a.data().timestamp;
            const bT = b.data().timestamp;
            const secondsDiff = aT.seconds - bT.seconds;
            if (secondsDiff === 0) {
              return -(aT.nanoseconds - bT.nanoseconds);
            } else {
              return -secondsDiff;
            }
          });
          return docs.slice(0, limit);
        }
      });
}

function queryCommonStock() {
  return createQuery('instrumentType', '==', 'commonstock');
}

function queryExchange1Instruments() {
  return createQuery('exchange', '==', 'EXCHG1');
}

function queryUSDInstruments() {
  return createQuery('price.currency', '==', 'USD');
}
insertData()
    .then(() => {
      const commonStock = queryCommonStock()
          .then(
              (docs) => {
                console.log('--- queryCommonStock: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      const exchange1Instruments = queryExchange1Instruments()
          .then(
              (docs) => {
                console.log('--- queryExchange1Instruments: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      const usdInstruments = queryUSDInstruments()
          .then(
              (docs) => {
                console.log('--- queryUSDInstruments: ');
                docs.forEach((doc) => {
                  console.log(`doc = ${util.inspect(doc.data(), {depth: 4})}`);
                });
              }
          );
      return Promise.all([commonStock, exchange1Instruments, usdInstruments]);
    });

Update index definitions

To remove the 500 writes per second constraint, delete the existing single-field and composite indexes that use the timestamp field.

Delete composite index definitions

Firebase Console

  1. Open the Firestore Composite Indexes page in the Firebase console.

    Go to Composite Indexes

  2. For each index that contains the timestamp field, click the button and click Delete.

GCP Console

  1. In the Google Cloud console, go to the Databases page.

    Go to Databases

  2. Select the required database from the list of databases.

  3. In the navigation menu, click Indexes, and then click the Composite tab.

  4. Use the Filter field to search for index definitions that contain the timestamp field.

  5. For each of these indexes, click the button and click Delete.

Firebase CLI

  1. If you haven't set up the Firebase CLI, follow these direction to install the CLI and run the firebase init command. During the init command, make sure to select Firestore: Deploy rules and create indexes for Firestore.
  2. During setup, the Firebase CLI downloads your existing index definitions to a file named, by default, firestore.indexes.json.
  3. Remove any index definitions that contain the timestamp field, for example:

    {
    "indexes": [
      // Delete composite index definition that contain the timestamp field
      {
        "collectionGroup": "instruments",
        "queryScope": "COLLECTION",
        "fields": [
          {
            "fieldPath": "exchange",
            "order": "ASCENDING"
          },
          {
            "fieldPath": "timestamp",
            "order": "DESCENDING"
          }
        ]
      },
      {
        "collectionGroup": "instruments",
        "queryScope": "COLLECTION",
        "fields": [
          {
            "fieldPath": "instrumentType",
            "order": "ASCENDING"
          },
          {
            "fieldPath": "timestamp",
            "order": "DESCENDING"
          }
        ]
      },
      {
        "collectionGroup": "instruments",
        "queryScope": "COLLECTION",
        "fields": [
          {
            "fieldPath": "price.currency",
            "order": "ASCENDING"
          },
          {
            "fieldPath": "timestamp",
            "order": "DESCENDING"
          }
        ]
      },
     ]
    }
    
  4. Deploy your updated index definitions:

    firebase deploy --only firestore:indexes
    

Update Single-field index definitions

Firebase Console

  1. Open the Firestore Single Field Indexes page in the Firebase console.

    Go to Single Field Indexes

  2. Click Add Exemption.

  3. For Collection ID, enter instruments. For Field path, enter timestamp.

  4. Under Query scope, select both Collection and Collection group.

  5. Click Next

  6. Toggle all the index settings to Disabled. Click Save.

  7. Repeat the same steps for the shard field.

GCP Console

  1. In the Google Cloud console, go to the Databases page.

    Go to Databases

  2. Select the required database from the list of databases.

  3. In the navigation menu, click Indexes, and then click the Single Field tab.

  4. Click the Single Field tab.

  5. Click Add Exemption.

  6. For Collection ID, enter instruments. For Field path, enter timestamp.

  7. Under Query scope, select both Collection and Collection group.

  8. Click Next

  9. Toggle all the index settings to Disabled. Click Save.

  10. Repeat the same steps for the shard field.

Firebase CLI

  1. Add the following to the fieldOverrides section of your index definitions file:

    {
     "fieldOverrides": [
       // Disable single-field indexing for the timestamp field
       {
         "collectionGroup": "instruments",
         "fieldPath": "timestamp",
         "indexes": []
       },
     ]
    }
    
  2. Deploy your updated index definitions:

    firebase deploy --only firestore:indexes
    

Create new composite indexes

After removing all the previous indexes containing the timestamp, define the new indexes that your app requires. Any index containing the timestamp field must also contain the shard field. For example, to support the queries above, add the following indexes:

Collection Fields indexed Query scope
instruments shard, price.currency, timestamp Collection
instruments shard, exchange, timestamp Collection
instruments shard, instrumentType, timestamp Collection

Error Messages

You can build these indexes by running the updated queries.

Each query returns an error message with a link to create the required index in the Firebase Console.

Firebase CLI

  1. Add the following indexes to your index definition file:

     {
       "indexes": [
       // New indexes for sharded timestamps
         {
           "collectionGroup": "instruments",
           "queryScope": "COLLECTION",
           "fields": [
             {
               "fieldPath": "shard",
               "order": "DESCENDING"
             },
             {
               "fieldPath": "exchange",
               "order": "ASCENDING"
             },
             {
               "fieldPath": "timestamp",
               "order": "DESCENDING"
             }
           ]
         },
         {
           "collectionGroup": "instruments",
           "queryScope": "COLLECTION",
           "fields": [
             {
               "fieldPath": "shard",
               "order": "DESCENDING"
             },
             {
               "fieldPath": "instrumentType",
               "order": "ASCENDING"
             },
             {
               "fieldPath": "timestamp",
               "order": "DESCENDING"
             }
           ]
         },
         {
           "collectionGroup": "instruments",
           "queryScope": "COLLECTION",
           "fields": [
             {
               "fieldPath": "shard",
               "order": "DESCENDING"
             },
             {
               "fieldPath": "price.currency",
               "order": "ASCENDING"
             },
             {
               "fieldPath": "timestamp",
               "order": "DESCENDING"
             }
           ]
         },
       ]
     }
    
  2. Deploy your updated index definitions:

    firebase deploy --only firestore:indexes
    

Understanding the write for limit sequential indexed fields

The limit on the write rate for sequential indexed fields comes from how Firestore stores index values and scales index writes. For each index write, Firestore defines a key-value entry which concatenates the document name and the value of each indexed field. Firestore organizes these index entries into groups of data called tablets. Each Firestore server holds one or more tablets. When the write load to a particular tablet becomes too high, Firestore scales horizontally by splitting the tablet into smaller tablets and spreading the new tablets across different Firestore servers.

Firestore places lexicographically close index entries on the same tablet. If the index values in a tablet are too close together, such as for timestamp fields, Firestore cannot efficiently split the tablet into smaller tablets. This creates a hot spot where a single tablet receives too much traffic, and read and write operations to the hot spot become slower.

By sharding a timestamp field, you make it possible for Firestore to efficiently split workloads across multiple tablets. Although the values of the timestamp field might remain close together, the concatenated shard and index value give Firestore enough space between index entries to split the entries among multiple tablets.

What's next