public static final class XraiAttribution.Builder extends GeneratedMessageV3.Builder<XraiAttribution.Builder> implements XraiAttributionOrBuilder
An explanation method that redistributes Integrated Gradients
attributions to segmented regions, taking advantage of the model's fully
differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825
Supported only by image Models.
Protobuf type google.cloud.aiplatform.v1beta1.XraiAttribution
Static Methods
public static final Descriptors.Descriptor getDescriptor()
Returns
Methods
public XraiAttribution.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public XraiAttribution build()
Returns
public XraiAttribution buildPartial()
Returns
public XraiAttribution.Builder clear()
Returns
Overrides
public XraiAttribution.Builder clearBlurBaselineConfig()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public XraiAttribution.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
public XraiAttribution.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
public XraiAttribution.Builder clearSmoothGradConfig()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Returns
public XraiAttribution.Builder clearStepCount()
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public XraiAttribution.Builder clone()
Returns
Overrides
public BlurBaselineConfig getBlurBaselineConfig()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public BlurBaselineConfig.Builder getBlurBaselineConfigBuilder()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public BlurBaselineConfigOrBuilder getBlurBaselineConfigOrBuilder()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public XraiAttribution getDefaultInstanceForType()
Returns
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
public SmoothGradConfig getSmoothGradConfig()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Returns
public SmoothGradConfig.Builder getSmoothGradConfigBuilder()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Returns
public SmoothGradConfigOrBuilder getSmoothGradConfigOrBuilder()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Returns
public int getStepCount()
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
Type | Description |
int | The stepCount.
|
public boolean hasBlurBaselineConfig()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Returns
Type | Description |
boolean | Whether the blurBaselineConfig field is set.
|
public boolean hasSmoothGradConfig()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Returns
Type | Description |
boolean | Whether the smoothGradConfig field is set.
|
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public XraiAttribution.Builder mergeBlurBaselineConfig(BlurBaselineConfig value)
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Parameter
Returns
public XraiAttribution.Builder mergeFrom(XraiAttribution other)
Parameter
Returns
public XraiAttribution.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
public XraiAttribution.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
public XraiAttribution.Builder mergeSmoothGradConfig(SmoothGradConfig value)
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Parameter
Returns
public final XraiAttribution.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
public XraiAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig value)
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Parameter
Returns
public XraiAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig.Builder builderForValue)
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
Parameter
Returns
public XraiAttribution.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public XraiAttribution.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
public XraiAttribution.Builder setSmoothGradConfig(SmoothGradConfig value)
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Parameter
Returns
public XraiAttribution.Builder setSmoothGradConfig(SmoothGradConfig.Builder builderForValue)
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
Parameter
Returns
public XraiAttribution.Builder setStepCount(int value)
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Name | Description |
value | int
The stepCount to set.
|
Returns
public final XraiAttribution.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides