public static final class TextSentimentAnnotation.Builder extends GeneratedMessageV3.Builder<TextSentimentAnnotation.Builder> implements TextSentimentAnnotationOrBuilder
Contains annotation details specific to text sentiment.
Protobuf type google.cloud.automl.v1.TextSentimentAnnotation
Static Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public TextSentimentAnnotation.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
build()
public TextSentimentAnnotation build()
Returns
buildPartial()
public TextSentimentAnnotation buildPartial()
Returns
clear()
public TextSentimentAnnotation.Builder clear()
Returns
Overrides
clearField(Descriptors.FieldDescriptor field)
public TextSentimentAnnotation.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
clearOneof(Descriptors.OneofDescriptor oneof)
public TextSentimentAnnotation.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
clearSentiment()
public TextSentimentAnnotation.Builder clearSentiment()
Output only. The sentiment with the semantic, as given to the
AutoMl.ImportData when populating the dataset from which the model used
for the prediction had been trained.
The sentiment values are between 0 and
Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
with higher value meaning more positive sentiment. They are completely
relative, i.e. 0 means least positive sentiment and sentiment_max means
the most positive from the sentiments present in the train data. Therefore
e.g. if train data had only negative sentiment, then sentiment_max, would
be still negative (although least negative).
The sentiment shouldn't be confused with "score" or "magnitude"
from the previous Natural Language Sentiment Analysis API.
int32 sentiment = 1;
Returns
clone()
public TextSentimentAnnotation.Builder clone()
Returns
Overrides
getDefaultInstanceForType()
public TextSentimentAnnotation getDefaultInstanceForType()
Returns
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
getSentiment()
public int getSentiment()
Output only. The sentiment with the semantic, as given to the
AutoMl.ImportData when populating the dataset from which the model used
for the prediction had been trained.
The sentiment values are between 0 and
Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
with higher value meaning more positive sentiment. They are completely
relative, i.e. 0 means least positive sentiment and sentiment_max means
the most positive from the sentiments present in the train data. Therefore
e.g. if train data had only negative sentiment, then sentiment_max, would
be still negative (although least negative).
The sentiment shouldn't be confused with "score" or "magnitude"
from the previous Natural Language Sentiment Analysis API.
int32 sentiment = 1;
Returns
Type | Description |
int | The sentiment.
|
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
isInitialized()
public final boolean isInitialized()
Returns
Overrides
mergeFrom(TextSentimentAnnotation other)
public TextSentimentAnnotation.Builder mergeFrom(TextSentimentAnnotation other)
Parameter
Returns
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public TextSentimentAnnotation.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
mergeFrom(Message other)
public TextSentimentAnnotation.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
mergeUnknownFields(UnknownFieldSet unknownFields)
public final TextSentimentAnnotation.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
setField(Descriptors.FieldDescriptor field, Object value)
public TextSentimentAnnotation.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public TextSentimentAnnotation.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
setSentiment(int value)
public TextSentimentAnnotation.Builder setSentiment(int value)
Output only. The sentiment with the semantic, as given to the
AutoMl.ImportData when populating the dataset from which the model used
for the prediction had been trained.
The sentiment values are between 0 and
Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
with higher value meaning more positive sentiment. They are completely
relative, i.e. 0 means least positive sentiment and sentiment_max means
the most positive from the sentiments present in the train data. Therefore
e.g. if train data had only negative sentiment, then sentiment_max, would
be still negative (although least negative).
The sentiment shouldn't be confused with "score" or "magnitude"
from the previous Natural Language Sentiment Analysis API.
int32 sentiment = 1;
Parameter
Name | Description |
value | int
The sentiment to set.
|
Returns
setUnknownFields(UnknownFieldSet unknownFields)
public final TextSentimentAnnotation.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides