public static final class ImageObjectDetectionEvaluationMetrics.Builder extends GeneratedMessageV3.Builder<ImageObjectDetectionEvaluationMetrics.Builder> implements ImageObjectDetectionEvaluationMetricsOrBuilder
Model evaluation metrics for image object detection problems.
Evaluates prediction quality of labeled bounding boxes.
Protobuf type google.cloud.automl.v1beta1.ImageObjectDetectionEvaluationMetrics
Inherited Members
com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
Static Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns
Methods
addAllBoundingBoxMetricsEntries(Iterable<? extends BoundingBoxMetricsEntry> values)
public ImageObjectDetectionEvaluationMetrics.Builder addAllBoundingBoxMetricsEntries(Iterable<? extends BoundingBoxMetricsEntry> values)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Name | Description |
values | Iterable<? extends com.google.cloud.automl.v1beta1.BoundingBoxMetricsEntry>
|
Returns
addBoundingBoxMetricsEntries(BoundingBoxMetricsEntry value)
public ImageObjectDetectionEvaluationMetrics.Builder addBoundingBoxMetricsEntries(BoundingBoxMetricsEntry value)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
addBoundingBoxMetricsEntries(BoundingBoxMetricsEntry.Builder builderForValue)
public ImageObjectDetectionEvaluationMetrics.Builder addBoundingBoxMetricsEntries(BoundingBoxMetricsEntry.Builder builderForValue)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
addBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry value)
public ImageObjectDetectionEvaluationMetrics.Builder addBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry value)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameters
Returns
addBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry.Builder builderForValue)
public ImageObjectDetectionEvaluationMetrics.Builder addBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry.Builder builderForValue)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameters
Returns
addBoundingBoxMetricsEntriesBuilder()
public BoundingBoxMetricsEntry.Builder addBoundingBoxMetricsEntriesBuilder()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
addBoundingBoxMetricsEntriesBuilder(int index)
public BoundingBoxMetricsEntry.Builder addBoundingBoxMetricsEntriesBuilder(int index)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public ImageObjectDetectionEvaluationMetrics.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
build()
public ImageObjectDetectionEvaluationMetrics build()
Returns
buildPartial()
public ImageObjectDetectionEvaluationMetrics buildPartial()
Returns
clear()
public ImageObjectDetectionEvaluationMetrics.Builder clear()
Returns
Overrides
clearBoundingBoxMeanAveragePrecision()
public ImageObjectDetectionEvaluationMetrics.Builder clearBoundingBoxMeanAveragePrecision()
Output only. The single metric for bounding boxes evaluation:
the mean_average_precision averaged over all bounding_box_metrics_entries.
float bounding_box_mean_average_precision = 3;
Returns
clearBoundingBoxMetricsEntries()
public ImageObjectDetectionEvaluationMetrics.Builder clearBoundingBoxMetricsEntries()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
clearEvaluatedBoundingBoxCount()
public ImageObjectDetectionEvaluationMetrics.Builder clearEvaluatedBoundingBoxCount()
Output only. The total number of bounding boxes (i.e. summed over all
images) the ground truth used to create this evaluation had.
int32 evaluated_bounding_box_count = 1;
Returns
clearField(Descriptors.FieldDescriptor field)
public ImageObjectDetectionEvaluationMetrics.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
clearOneof(Descriptors.OneofDescriptor oneof)
public ImageObjectDetectionEvaluationMetrics.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
clone()
public ImageObjectDetectionEvaluationMetrics.Builder clone()
Returns
Overrides
getBoundingBoxMeanAveragePrecision()
public float getBoundingBoxMeanAveragePrecision()
Output only. The single metric for bounding boxes evaluation:
the mean_average_precision averaged over all bounding_box_metrics_entries.
float bounding_box_mean_average_precision = 3;
Returns
Type | Description |
float | The boundingBoxMeanAveragePrecision.
|
getBoundingBoxMetricsEntries(int index)
public BoundingBoxMetricsEntry getBoundingBoxMetricsEntries(int index)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
getBoundingBoxMetricsEntriesBuilder(int index)
public BoundingBoxMetricsEntry.Builder getBoundingBoxMetricsEntriesBuilder(int index)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
getBoundingBoxMetricsEntriesBuilderList()
public List<BoundingBoxMetricsEntry.Builder> getBoundingBoxMetricsEntriesBuilderList()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
getBoundingBoxMetricsEntriesCount()
public int getBoundingBoxMetricsEntriesCount()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
getBoundingBoxMetricsEntriesList()
public List<BoundingBoxMetricsEntry> getBoundingBoxMetricsEntriesList()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
getBoundingBoxMetricsEntriesOrBuilder(int index)
public BoundingBoxMetricsEntryOrBuilder getBoundingBoxMetricsEntriesOrBuilder(int index)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
getBoundingBoxMetricsEntriesOrBuilderList()
public List<? extends BoundingBoxMetricsEntryOrBuilder> getBoundingBoxMetricsEntriesOrBuilderList()
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Returns
Type | Description |
List<? extends com.google.cloud.automl.v1beta1.BoundingBoxMetricsEntryOrBuilder> | |
getDefaultInstanceForType()
public ImageObjectDetectionEvaluationMetrics getDefaultInstanceForType()
Returns
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
getEvaluatedBoundingBoxCount()
public int getEvaluatedBoundingBoxCount()
Output only. The total number of bounding boxes (i.e. summed over all
images) the ground truth used to create this evaluation had.
int32 evaluated_bounding_box_count = 1;
Returns
Type | Description |
int | The evaluatedBoundingBoxCount.
|
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
isInitialized()
public final boolean isInitialized()
Returns
Overrides
mergeFrom(ImageObjectDetectionEvaluationMetrics other)
public ImageObjectDetectionEvaluationMetrics.Builder mergeFrom(ImageObjectDetectionEvaluationMetrics other)
Parameter
Returns
public ImageObjectDetectionEvaluationMetrics.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
mergeFrom(Message other)
public ImageObjectDetectionEvaluationMetrics.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
mergeUnknownFields(UnknownFieldSet unknownFields)
public final ImageObjectDetectionEvaluationMetrics.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
removeBoundingBoxMetricsEntries(int index)
public ImageObjectDetectionEvaluationMetrics.Builder removeBoundingBoxMetricsEntries(int index)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameter
Returns
setBoundingBoxMeanAveragePrecision(float value)
public ImageObjectDetectionEvaluationMetrics.Builder setBoundingBoxMeanAveragePrecision(float value)
Output only. The single metric for bounding boxes evaluation:
the mean_average_precision averaged over all bounding_box_metrics_entries.
float bounding_box_mean_average_precision = 3;
Parameter
Name | Description |
value | float
The boundingBoxMeanAveragePrecision to set.
|
Returns
setBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry value)
public ImageObjectDetectionEvaluationMetrics.Builder setBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry value)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameters
Returns
setBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry.Builder builderForValue)
public ImageObjectDetectionEvaluationMetrics.Builder setBoundingBoxMetricsEntries(int index, BoundingBoxMetricsEntry.Builder builderForValue)
Output only. The bounding boxes match metrics for each
Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
pair.
repeated .google.cloud.automl.v1beta1.BoundingBoxMetricsEntry bounding_box_metrics_entries = 2;
Parameters
Returns
setEvaluatedBoundingBoxCount(int value)
public ImageObjectDetectionEvaluationMetrics.Builder setEvaluatedBoundingBoxCount(int value)
Output only. The total number of bounding boxes (i.e. summed over all
images) the ground truth used to create this evaluation had.
int32 evaluated_bounding_box_count = 1;
Parameter
Name | Description |
value | int
The evaluatedBoundingBoxCount to set.
|
Returns
setField(Descriptors.FieldDescriptor field, Object value)
public ImageObjectDetectionEvaluationMetrics.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public ImageObjectDetectionEvaluationMetrics.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
setUnknownFields(UnknownFieldSet unknownFields)
public final ImageObjectDetectionEvaluationMetrics.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides