- 1.33.0 (latest)
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
KBinsDiscretizer(
n_bins: int = 5, strategy: typing.Literal["uniform", "quantile"] = "quantile"
)
Bin continuous data into intervals.
Parameters | |
---|---|
Name | Description |
n_bins |
int, default 5
The number of bins to produce. Raises ValueError if |
strategy |
{'uniform', 'quantile'}, default='quantile'
Strategy used to define the widths of the bins. 'uniform': All bins in each feature have identical widths. 'quantile': All bins in each feature have the same number of points. Only |
Methods
__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.KBinsDiscretizer
Fit the estimator.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
The Dataframe or Series with training data. |
y |
default None
Ignored. |
Returns | |
---|---|
Type | Description |
KBinsDiscretizer | Fitted scaler. |
fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
Fit to data, then transform it.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
Series or DataFrame of shape (n_samples, n_features). Input samples. |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations). |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame of shape (n_samples, n_features_new) Transformed DataFrame. |
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
Parameter | |
---|---|
Name | Description |
deep |
bool, default True
Default |
Returns | |
---|---|
Type | Description |
Dictionary | A dictionary of parameter names mapped to their values. |
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
Parameters | |
---|---|
Name | Description |
model_name |
str
The name of the model. |
replace |
bool, default False
Determine whether to replace if the model already exists. Default to False. |
transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Discretize the data.
Parameter | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
The DataFrame or Series to be transformed. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | Transformed result. |