- 0.58.0 (latest)
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#max_data_item_count
def max_data_item_count() -> ::Integer
Returns
- (::Integer) — Max number of human labeled DataItems.
#max_data_item_count=
def max_data_item_count=(value) -> ::Integer
Parameter
- value (::Integer) — Max number of human labeled DataItems.
Returns
- (::Integer) — Max number of human labeled DataItems.
#max_data_item_percentage
def max_data_item_percentage() -> ::Integer
Returns
- (::Integer) — Max percent of total DataItems for human labeling.
#max_data_item_percentage=
def max_data_item_percentage=(value) -> ::Integer
Parameter
- value (::Integer) — Max percent of total DataItems for human labeling.
Returns
- (::Integer) — Max percent of total DataItems for human labeling.
#sample_config
def sample_config() -> ::Google::Cloud::AIPlatform::V1::SampleConfig
Returns
- (::Google::Cloud::AIPlatform::V1::SampleConfig) — Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
#sample_config=
def sample_config=(value) -> ::Google::Cloud::AIPlatform::V1::SampleConfig
Parameter
- value (::Google::Cloud::AIPlatform::V1::SampleConfig) — Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
Returns
- (::Google::Cloud::AIPlatform::V1::SampleConfig) — Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
#training_config
def training_config() -> ::Google::Cloud::AIPlatform::V1::TrainingConfig
Returns
- (::Google::Cloud::AIPlatform::V1::TrainingConfig) — CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
#training_config=
def training_config=(value) -> ::Google::Cloud::AIPlatform::V1::TrainingConfig
Parameter
- value (::Google::Cloud::AIPlatform::V1::TrainingConfig) — CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
Returns
- (::Google::Cloud::AIPlatform::V1::TrainingConfig) — CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.