- 0.58.0 (latest)
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation.
Training pipeline will perform following transformation functions.
- Apply the transformation functions for Numerical columns.
- Determine the year, month, day,and weekday. Treat each value from the
- timestamp as a Categorical column.
- Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#column_name
def column_name() -> ::String
- (::String)
#column_name=
def column_name=(value) -> ::String
- value (::String)
- (::String)
#invalid_values_allowed
def invalid_values_allowed() -> ::Boolean
- (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.
#invalid_values_allowed=
def invalid_values_allowed=(value) -> ::Boolean
- value (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.
- (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.
#time_format
def time_format() -> ::String
-
(::String) —
The format in which that time field is expressed. The time_format must either be one of:
unix-seconds
unix-milliseconds
unix-microseconds
unix-nanoseconds
(for respectively number of seconds, milliseconds, microseconds and nanoseconds since start of the Unix epoch); or be written instrftime
syntax. If time_format is not set, then the default format is RFC 3339date-time
format, wheretime-offset
="Z"
(e.g. 1985-04-12T23:20:50.52Z)
#time_format=
def time_format=(value) -> ::String
-
value (::String) —
The format in which that time field is expressed. The time_format must either be one of:
unix-seconds
unix-milliseconds
unix-microseconds
unix-nanoseconds
(for respectively number of seconds, milliseconds, microseconds and nanoseconds since start of the Unix epoch); or be written instrftime
syntax. If time_format is not set, then the default format is RFC 3339date-time
format, wheretime-offset
="Z"
(e.g. 1985-04-12T23:20:50.52Z)
-
(::String) —
The format in which that time field is expressed. The time_format must either be one of:
unix-seconds
unix-milliseconds
unix-microseconds
unix-nanoseconds
(for respectively number of seconds, milliseconds, microseconds and nanoseconds since start of the Unix epoch); or be written instrftime
syntax. If time_format is not set, then the default format is RFC 3339date-time
format, wheretime-offset
="Z"
(e.g. 1985-04-12T23:20:50.52Z)