This page provides detailed reference information about arguments you submit to AI Platform Training when running a training job using the built-in BERT algorithm.
Versioning
The built-in BERT algorithm uses TensorFlow 2.3.
Data format arguments
The following arguments are used for data formatting:
Arguments | Details |
---|---|
train_dataset_path |
Cloud Storage path to a TFRecord file.
Required Type: String |
eval_dataset_path |
Cloud Storage path to a TFRecord file. Must have the same format as training_data_path .Required Type: String |
job-dir |
Cloud Storage path where model, checkpoints and other training
artifacts reside. The following directories are created here:
Required Type: String |
Hyperparameters
Hyperparameter | Details |
---|---|
BASIC PARAMETERS | |
input_meta_data_path |
Google Cloud Storage path to an input metadata schema file. Required Type: String |
bert_config_file |
Google Cloud Storage path where the BERT config file is stored. Required Type: String |
initial_checkpoint |
Starting checkpoint for fine-tuning (usually a pre-trained BERT model.) Required Type:String |
mode |
Mode for algorithm run. Required Type:Enum Options: train_and_eval, export_only |
num_train_epochs |
Number of training epochs to run
(only available in train_and_eval mode.)Type:Int Default:3 |
ADVANCED PARAMETERS | |
train_batch_size |
Batch size for training. Type: Int Default: 32 |
eval_batch_size |
Batch size for evaluation. Type: Int Default: 32 |
steps_per_loop |
The number of steps per graph-mode loop. Type: Int Default: 200 |
learning_rate |
The initial learning rate for the Adam optimizer. Type: Float Default: 0.00005 |
scale_loss |
Whether or not to divide the loss by number of replica inside the per-replica loss function. Type: Boolean Default: False |
use_keras_compile_fit |
Use Keras compile
/fit() API for training logic. Type: Boolean Default: False |