This page provides detailed reference information about arguments you submit to AI Platform Training when running a training job using the built-in NCF algorithm.
Versioning
The built-in NCF algorithm uses TensorFlow 2.3.
Data format arguments
The following arguments are used for data formatting:
Arguments | Details |
---|---|
train_dataset_path |
Cloud Storage path to a TFRecord file.
Required Type: String |
eval_dataset_path |
Cloud Storage path to a TFRecord file. Must have the same format as training_data_path .Required Type: String |
job-dir |
Cloud Storage path where model, checkpoints and other training
artifacts reside. The following directories are created here:
Required Type: String |
Hyperparameters
Hyperparameter | Details |
---|---|
BASIC PARAMETERS | |
input_meta_data_path |
Google Cloud Storage path to an input metadata schema file Required Type: String |
train_epochs |
Number of epochs to run training for. Required Type: Int Default: 10 |
learning_rate |
Learning rate used by the Adam optimizer. Required Type:Float Default: 0.001 |
ADVANCED PARAMETERS | |
batch_size |
Batch size for training. Type: Int Default: 256 |
eval_batch_size |
Batch size for evaluation. Type: Int Default: 256 |
num_factors |
Embedding size of the MF model. Required Type: Int Default: 8 |
layers |
Sizes of the hidden layers for MLP. Format as comma-separated integers. Type: String Default: 64,32,16,6 |
mf_regularization |
Regularization factor for MF embeddings. Type: Float Default: 0. |
mlp_regularization |
The regularization factor for each MLP layer. Format as comma-separated floats. Must have same number of entries as layers parameter. Type: String Default: 0.,0.,0.,0. |
num_neg |
Number of negative instances to pair with a positive instance. Type: Int Default: 4 |
beta1 |
Beta 1 hyperparameter for the Adam optimizer. Type: Float Default: 0.9 |
beta2 |
Beta 2 hyperparameter for the Adam optimizer. Type: Float Default: 0.999 |
epsilon |
Epsilon hyperparameter for the Adam optimizer. Type: Float Default: 0.000000001 |
hr_threshold |
Value of HR evalutation metric at which training should stop. Type: Float Default: None |
constructor_type |
Strategy used to generate false negatives. Type: Enumeration Options: bisection, materialized |
ml_perf |
Change model behavior to match MLPerf reference implementations. Type: Boolean Default: False |
output_ml_perf_compliance_logging |
Output relevant logging for MLPerf compliance (only available if ml_perf is set to True.) Type: Boolean Default: False |
keras_use_ctl |
Use custom Keras training loop in model training. Type: Boolean Default: False |