Read from Apache Iceberg to Dataflow

To read from Apache Iceberg to Dataflow, use the managed I/O connector.

Dependencies

Add the following dependencies to your project:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

Configuration

For Apache Iceberg, the Managed I/O uses the following configuration parameters:

Name Data type Description
table string The identifier of the Apache Iceberg table. Example: "db.table1".
catalog_name string The name of the catalog. Example: "local".
catalog_properties map A map of configuration properties for the Apache Iceberg catalog. The required properties depend on the catalog. For more information, see CatalogUtil in the Apache Iceberg documentation.
config_properties map An optional set of Hadoop configuration properties. For more information, see CatalogUtil in the Apache Iceberg documentation.

Example

The following example reads from an Apache Iceberg table and writes the data to text files.

Java

To authenticate to Dataflow, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.common.collect.ImmutableMap;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.values.PCollectionRowTuple;
import org.apache.beam.sdk.values.TypeDescriptors;

public class ApacheIcebergRead {

  static final String CATALOG_TYPE = "hadoop";

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("Path to write the output file")
    String getOutputPath();

    void setOutputPath(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);

    @Description("The name of the table to write to")
    String getTableName();

    void setTableName(String value);
  }

  public static void main(String[] args) {

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    //   --tableName= $TABLE_NAME --outputPath=$OUTPUT_FILE
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", CATALOG_TYPE)
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("table", options.getTableName())
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        .build();

    // Build the pipeline.
    pipeline.apply(Managed.read(Managed.ICEBERG).withConfig(config))
        .getSinglePCollection()
        // Format each record as a string with the format 'id:name'.
        .apply(MapElements
            .into(TypeDescriptors.strings())
            .via((row -> {
              return String.format("%d:%s",
                  row.getInt64("id"),
                  row.getString("name"));
            })))
        // Write to a text file.
        .apply(
            TextIO.write()
                .to(options.getOutputPath())
                .withNumShards(1)
                .withSuffix(".txt"));

    pipeline.run().waitUntilFinish();
  }
}