JDBC to Cloud Spanner template

Use the Dataproc Serverless JDBC to Spanner template to extract data from JDBC databases to Spanner.

This template supports the following databases as input:

  • MySQL
  • PostgreSQL
  • Microsoft SQL Server
  • Oracle

Use the template

Run the template using the gcloud CLI or Dataproc API.

gcloud

Before using any of the command data below, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
  • REGION: Required. Compute Engine region.
  • TEMPLATE_VERSION: Required. Specify latest for the latest template version, or the date of a specific version, for example, 2023-03-17_v0.1.0-beta (visit gs://dataproc-templates-binaries or run gcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in the default network is selected.

    Example: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
      wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
    • Postgres SQL:
      wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
    • Microsoft SQL Server:
        
      wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
    • Oracle:
      wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
  • The following variables are used to construct the required JDBC_CONNECTION_URL:
    • JDBC_HOST, JDBC_PORT, JDBC_DATABASE, or, for Oracle, JDBC_SERVICE, JDBC_USERNAME, and JDBC_PASSWORD: Required. JDBC host, port, database, username, and password.
      • MySQL:
        jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
      • PostgreSQL:
        jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
      • Microsoft SQL Server:
        jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
      • Oracle:
        jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • DRIVER: Required. The JDBC driver which will be used for the connection:
      • MySQL:
        com.mysql.cj.jdbc.Driver
      • Postgres SQL:
        org.postgresql.Driver
      • Microsoft SQL Server:
          com.microsoft.sqlserver.jdbc.SQLServerDriver
      • Oracle:
        oracle.jdbc.driver.OracleDriver
    • QUERY or QUERY_FILE: Required. Set either QUERY or QUERY_FILE to specify the query to use to extract data from JDBC
    • INPUT_PARTITION_COLUMN, LOWERBOUND, UPPERBOUND, NUM_PARTITIONS: Optional. If used, all of the following parameters must be specified:
      • INPUT_PARTITION_COLUMN: JDBC input table partition column name.
      • LOWERBOUND: JDBC input table partition column lower bound used to determine the partition stride.
      • UPPERBOUND: JDBC input table partition column upper bound used to decide the partition stride.
      • NUM_PARTITIONS: The maximum number of partitions that can be used for parallelism of table reads and writes. If specified, this value is used for the JDBC input and output connection. Default: 10.
    • FETCHSIZE: Optional. How many rows to fetch per round trip. Default: 10.
    • JDBC_SESSION_INIT: Optional. Session initialization statement to read Java templates.
    • TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into Spanner. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
    • INSTANCE: Required. Spanner instance ID.
    • SPANNER_DATABASE: Required. Spanner database ID.
    • TABLE: Required. Spanner output table name.
    • SPANNER_JDBC_DIALECT: Required. Spanner JDBC dialect. Options: googlesql or postgresql. Defaults to googlesql.
    • MODE: Optional. Write mode for Spanner output. Options: Append, Overwrite, Ignore, or ErrorIfExists. Defaults to ErrorIfExists.
    • PRIMARY_KEY: Required. Comma separated Primary key columns needed when creating Spanner output table.
    • SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
    • PROPERTY and PROPERTY_VALUE: Optional. Comma-separated list of Spark property=value pairs.
    • LABEL and LABEL_VALUE: Optional. Comma-separated list of label=value pairs.
    • LOG_LEVEL: Optional. Level of logging. Can be one of ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, or WARN. Default: INFO.
    • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed key.

      Example: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

    Execute the following command:

    Linux, macOS, or Cloud Shell

    gcloud dataproc batches submit spark \
        --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \
        --version="1.2" \
        --project="PROJECT_ID" \
        --region="REGION" \
        --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" \
        --subnet="SUBNET" \
        --kms-key="KMS_KEY" \
        --service-account="SERVICE_ACCOUNT" \
        --properties="PROPERTY=PROPERTY_VALUE" \
        --labels="LABEL=LABEL_VALUE" \
        -- --template=JDBCTOSPANNER \
        --templateProperty log.level="LOG_LEVEL" \
        --templateProperty project.id="PROJECT_ID" \
        --templateProperty jdbctospanner.jdbc.url="JDBC_CONNECTION_URL" \
        --templateProperty jdbctospanner.jdbc.driver.class.name="DRIVER" \
        --templateProperty jdbctospanner.jdbc.fetchsize="FETCHSIZE" \
        --templateProperty jdbctospanner.jdbc.sessioninitstatement="JDBC_SESSION_INIT" \
        --templateProperty jdbctospanner.sql="QUERY" \
        --templateProperty jdbctospanner.sql.file="QUERY_FILE" \
        --templateProperty jdbctospanner.sql.numPartitions="NUM_PARTITIONS" \
        --templateProperty jdbctospanner.sql.partitionColumn="INPUT_PARTITION_COLUMN" \
        --templateProperty jdbctospanner.sql.lowerBound="LOWERBOUND" \
        --templateProperty jdbctospanner.sql.upperBound="UPPERBOUND" \
        --templateProperty jdbctospanner.output.instance="INSTANCE" \
        --templateProperty jdbctospanner.output.database="SPANNER_DATABASE" \
        --templateProperty jdbctospanner.output.table="TABLE" \
        --templateProperty jdbctospanner.output.saveMode="MODE" \
        --templateProperty jdbctospanner.output.primaryKey="PRIMARY_KEY" \
        --templateProperty jdbctospanner.output.batch.size="BATCHSIZE" \
        --templateProperty jdbctospanner.temp.table="TEMPVIEW" \
        --templateProperty jdbctospanner.temp.query="SQL_QUERY" \
        --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT" 

    Windows (PowerShell)

    gcloud dataproc batches submit spark `
        --class=com.google.cloud.dataproc.templates.main.DataProcTemplate `
        --version="1.2" `
        --project="PROJECT_ID" `
        --region="REGION" `
        --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" `
        --subnet="SUBNET" `
        --kms-key="KMS_KEY" `
        --service-account="SERVICE_ACCOUNT" `
        --properties="PROPERTY=PROPERTY_VALUE" `
        --labels="LABEL=LABEL_VALUE" `
        -- --template=JDBCTOSPANNER `
        --templateProperty log.level="LOG_LEVEL" `
        --templateProperty project.id="PROJECT_ID" `
        --templateProperty jdbctospanner.jdbc.url="JDBC_CONNECTION_URL" `
        --templateProperty jdbctospanner.jdbc.driver.class.name="DRIVER" `
        --templateProperty jdbctospanner.jdbc.fetchsize="FETCHSIZE" `
        --templateProperty jdbctospanner.jdbc.sessioninitstatement="JDBC_SESSION_INIT" `
        --templateProperty jdbctospanner.sql="QUERY" `
        --templateProperty jdbctospanner.sql.file="QUERY_FILE" `
        --templateProperty jdbctospanner.sql.numPartitions="NUM_PARTITIONS" `
        --templateProperty jdbctospanner.sql.partitionColumn="INPUT_PARTITION_COLUMN" `
        --templateProperty jdbctospanner.sql.lowerBound="LOWERBOUND" `
        --templateProperty jdbctospanner.sql.upperBound="UPPERBOUND" `
        --templateProperty jdbctospanner.output.instance="INSTANCE" `
        --templateProperty jdbctospanner.output.database="SPANNER_DATABASE" `
        --templateProperty jdbctospanner.output.table="TABLE" `
        --templateProperty jdbctospanner.output.saveMode="MODE" `
        --templateProperty jdbctospanner.output.primaryKey="PRIMARY_KEY" `
        --templateProperty jdbctospanner.output.batch.size="BATCHSIZE" `
        --templateProperty jdbctospanner.temp.table="TEMPVIEW" `
        --templateProperty jdbctospanner.temp.query="SQL_QUERY" `
        --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT" 

    Windows (cmd.exe)

    gcloud dataproc batches submit spark ^
        --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^
        --version="1.2" ^
        --project="PROJECT_ID" ^
        --region="REGION" ^
        --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ^
        --subnet="SUBNET" ^
        --kms-key="KMS_KEY" ^
        --service-account="SERVICE_ACCOUNT" ^
        --properties="PROPERTY=PROPERTY_VALUE" ^
        --labels="LABEL=LABEL_VALUE" ^
        -- --template=JDBCTOSPANNER ^
        --templateProperty log.level="LOG_LEVEL" ^
        --templateProperty project.id="PROJECT_ID" ^
        --templateProperty jdbctospanner.jdbc.url="JDBC_CONNECTION_URL" ^
        --templateProperty jdbctospanner.jdbc.driver.class.name="DRIVER" ^
        --templateProperty jdbctospanner.jdbc.fetchsize="FETCHSIZE" ^
        --templateProperty jdbctospanner.jdbc.sessioninitstatement="JDBC_SESSION_INIT" ^
        --templateProperty jdbctospanner.sql="QUERY" ^
        --templateProperty jdbctospanner.sql.file="QUERY_FILE" ^
        --templateProperty jdbctospanner.sql.numPartitions="NUM_PARTITIONS" ^
        --templateProperty jdbctospanner.sql.partitionColumn="INPUT_PARTITION_COLUMN" ^
        --templateProperty jdbctospanner.sql.lowerBound="LOWERBOUND" ^
        --templateProperty jdbctospanner.sql.upperBound="UPPERBOUND" ^
        --templateProperty jdbctospanner.output.instance="INSTANCE" ^
        --templateProperty jdbctospanner.output.database="SPANNER_DATABASE" ^
        --templateProperty jdbctospanner.output.table="TABLE" ^
        --templateProperty jdbctospanner.output.saveMode="MODE" ^
        --templateProperty jdbctospanner.output.primaryKey="PRIMARY_KEY" ^
        --templateProperty jdbctospanner.output.batch.size="BATCHSIZE" ^
        --templateProperty jdbctospanner.temp.table="TEMPVIEW" ^
        --templateProperty jdbctospanner.temp.query="SQL_QUERY" ^
        --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT" 

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
  • REGION: Required. Compute Engine region.
  • TEMPLATE_VERSION: Required. Specify latest for the latest template version, or the date of a specific version, for example, 2023-03-17_v0.1.0-beta (visit gs://dataproc-templates-binaries or run gcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in the default network is selected.

    Example: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
      wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
    • Postgres SQL:
      wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
    • Microsoft SQL Server:
        
      wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
    • Oracle:
      wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
  • The following variables are used to construct the required JDBC_CONNECTION_URL:
    • JDBC_HOST, JDBC_PORT, JDBC_DATABASE, or, for Oracle, JDBC_SERVICE, JDBC_USERNAME, and JDBC_PASSWORD: Required. JDBC host, port, database, username, and password.
      • MySQL:
        jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
      • PostgreSQL:
        jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
      • Microsoft SQL Server:
        jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
      • Oracle:
        jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • DRIVER: Required. The JDBC driver which will be used for the connection:
      • MySQL:
        com.mysql.cj.jdbc.Driver
      • Postgres SQL:
        org.postgresql.Driver
      • Microsoft SQL Server:
          com.microsoft.sqlserver.jdbc.SQLServerDriver
      • Oracle:
        oracle.jdbc.driver.OracleDriver
    • QUERY or QUERY_FILE: Required. Set either QUERY or QUERY_FILE to specify the query to use to extract data from JDBC
    • INPUT_PARTITION_COLUMN, LOWERBOUND, UPPERBOUND, NUM_PARTITIONS: Optional. If used, all of the following parameters must be specified:
      • INPUT_PARTITION_COLUMN: JDBC input table partition column name.
      • LOWERBOUND: JDBC input table partition column lower bound used to determine the partition stride.
      • UPPERBOUND: JDBC input table partition column upper bound used to decide the partition stride.
      • NUM_PARTITIONS: The maximum number of partitions that can be used for parallelism of table reads and writes. If specified, this value is used for the JDBC input and output connection. Default: 10.
    • FETCHSIZE: Optional. How many rows to fetch per round trip. Default: 10.
    • JDBC_SESSION_INIT: Optional. Session initialization statement to read Java templates.
    • TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into Spanner. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
    • INSTANCE: Required. Spanner instance ID.
    • SPANNER_DATABASE: Required. Spanner database ID.
    • TABLE: Required. Spanner output table name.
    • SPANNER_JDBC_DIALECT: Required. Spanner JDBC dialect. Options: googlesql or postgresql. Defaults to googlesql.
    • MODE: Optional. Write mode for Spanner output. Options: Append, Overwrite, Ignore, or ErrorIfExists. Defaults to ErrorIfExists.
    • PRIMARY_KEY: Required. Comma separated Primary key columns needed when creating Spanner output table.
    • SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
    • PROPERTY and PROPERTY_VALUE: Optional. Comma-separated list of Spark property=value pairs.
    • LABEL and LABEL_VALUE: Optional. Comma-separated list of label=value pairs.
    • LOG_LEVEL: Optional. Level of logging. Can be one of ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, or WARN. Default: INFO.
    • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed key.

      Example: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

    HTTP method and URL:

    POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches

    Request JSON body:

    
    {
      "environmentConfig": {
        "executionConfig": {
          "subnetworkUri": "SUBNET",
          "kmsKey": "KMS_KEY",
          "serviceAccount": "SERVICE_ACCOUNT"
        }
      },
      "labels": {
        "LABEL": "LABEL_VALUE"
      },
      "runtimeConfig": {
        "version": "1.2",
        "properties": {
          "PROPERTY": "PROPERTY_VALUE"
        }
      },
      "sparkBatch": {
        "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate",
        "args": [
          "--template","JDBCTOSPANNER",
          "--templateProperty","log.level=LOG_LEVEL",
          "--templateProperty","project.id=PROJECT_ID",
          "--templateProperty","jdbctospanner.jdbc.url=JDBC_CONNECTION_URL",
          "--templateProperty","jdbctospanner.jdbc.driver.class.name=DRIVER",
          "--templateProperty","jdbctospanner.jdbc.fetchsize=FETCHSIZE",
          "--templateProperty","jdbctospanner.jdbc.sessioninitstatement=JDBC_SESSION_INIT",
          "--templateProperty","jdbctospanner.sql=QUERY",
          "--templateProperty","jdbctospanner.sql.file=QUERY_FILE",
          "--templateProperty","jdbctospanner.sql.numPartitions=NUM_PARTITIONS",
          "--templateProperty","jdbctospanner.sql.partitionColumn=INPUT_PARTITION_COLUMN",
          "--templateProperty","jdbctospanner.sql.lowerBound=LOWERBOUND",
          "--templateProperty","jdbctospanner.sql.upperBound=UPPERBOUND",
          "--templateProperty","jdbctospanner.output.instance=INSTANCE",
          "--templateProperty","jdbctospanner.output.database=SPANNER_DATABASE",
          "--templateProperty","jdbctospanner.output.table=TABLE",
          "--templateProperty","jdbctospanner.output.saveMode=MODE",
          "--templateProperty","jdbctospanner.output.primaryKey=PRIMARY_KEY",
          "--templateProperty","jdbctospanner.output.batch.size=BATCHSIZE",
          "--templateProperty","jdbctospanner.temp.table=TEMPVIEW",
          "--templateProperty","jdbctospanner.temp.query=SQL_QUERY",
          "--templateProperty spanner.jdbc.dialect=SPANNER_JDBC_DIALECT"
        ],
        "jarFileUris": [
          "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar"
        ]
      }
    }
    

    To send your request, expand one of these options:

    You should receive a JSON response similar to the following:

    
    {
      "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID",
      "metadata": {
        "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata",
        "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID",
        "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583",
        "createTime": "2023-02-24T03:31:03.440329Z",
        "operationType": "BATCH",
        "description": "Batch"
      }
    }