Cloud Storage to JDBC template
Use the Dataproc Serverless Cloud Storage to JDBC template to extract data from Cloud Storage to JDBC databases.
Use the template
Run the template using the gcloud CLI or Dataproc API.
gcloud
Before using any of the command data below, make the following replacements:
- PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
- REGION: Required. Compute Engine region.
- SUBNET: Optional. If a subnet is not specified, the subnet
in the specified REGION in the
default
network is selected.Example:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage
path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download
JDBC connectors for uploading to Cloud Storage:
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- CLOUD_STORAGE_PATH: Required. Cloud Storage
path where input files are stored.
Example:
gs://dataproc-templates/cloud_storage_to_jdbc_input
- FORMAT: Required. Output data format. Options:
avro
,parquet
,csv
ororc
. Default:avro
. Note: Ifavro
, you must add "file:///usr/lib/spark/connector/spark-avro.jar
" to thejars
gcloud CLI flag or API field.Example (the
file://
prefix references a Dataproc Serverless jar file):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - MODE: Optional. Write mode for Cloud Storage output.
Options:
Append
,Overwrite
,Ignore
, orErrorIfExists
. Default:ErrorIfExists
. - The following variables are used to construct the required
JDBC_CONNECTION_URL:
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE, or, for Oracle, JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
Construct the JDBC_CONNECTION_URL using one of the following connector-specific formats:
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Postgres SQL:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Microsoft SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=
- JDBC_TABLE: Required. Table name where output will be written.
- DRIVER: Required. The JDBC driver that is used for
the connection:
- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- TEMPLATE_VERSION: Required. Specify
latest
for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta
(visit gs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries
to list available template versions). - LOG_LEVEL: Optional. Level of logging. Can be one of
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
, orWARN
. Default:INFO
. - NUM_PARTITIONS: Optional. The maximum number of
partitions that can be used for parallelism of table writes.
If specified, this value is used for the JDBC output connection. Defaults to the initial partitions set by Spark
read()
. - BATCH_SIZE: Optional. Number of records to insert per round trip. Default:
1000
. - SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
- PROPERTY and PROPERTY_VALUE:
Optional. Comma-separated list of
Spark property=
value
pairs. - LABEL and LABEL_VALUE:
Optional. Comma-separated list of
label
=value
pairs. -
KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed key.
Example:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Execute the following command:
Linux, macOS, or Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --project="PROJECT_ID" \ --region="REGION" \ --version="1.2" \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" \ --subnet="SUBNET" \ --kms-key="KMS_KEY" \ --service-account="SERVICE_ACCOUNT" \ --properties="PROPERTY=PROPERTY_VALUE" \ --labels="LABEL=LABEL_VALUE" \ -- --template=GCSTOJDBC \ --templateProperty project.id="PROJECT_ID" \ --templateProperty log.level="LOG_LEVEL" \ --templateProperty gcs.jdbc.input.location="CLOUD_STORAGE_PATH" \ --templateProperty gcs.jdbc.input.format="FORMAT" \ --templateProperty gcs.jdbc.output.saveMode="MODE" \ --templateProperty gcs.jdbc.output.url="JDBC_CONNECTION_URL" \ --templateProperty gcs.jdbc.output.table="JDBC_TABLE" \ --templateProperty gcs.jdbc.output.driver="DRIVER" \ --templateProperty gcs.jdbc.spark.partitions="NUM_PARTITIONS" \ --templateProperty gcs.jdbc.output.batchInsertSize="BATCH_SIZE"
Windows (PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --project="PROJECT_ID" ` --region="REGION" ` --version="1.2" ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ` --subnet="SUBNET" ` --kms-key="KMS_KEY" ` --service-account="SERVICE_ACCOUNT" ` --properties="PROPERTY=PROPERTY_VALUE" ` --labels="LABEL=LABEL_VALUE" ` -- --template=GCSTOJDBC ` --templateProperty project.id="PROJECT_ID" ` --templateProperty log.level="LOG_LEVEL" ` --templateProperty gcs.jdbc.input.location="CLOUD_STORAGE_PATH" ` --templateProperty gcs.jdbc.input.format="FORMAT" ` --templateProperty gcs.jdbc.output.saveMode="MODE" ` --templateProperty gcs.jdbc.output.url="JDBC_CONNECTION_URL" ` --templateProperty gcs.jdbc.output.table="JDBC_TABLE" ` --templateProperty gcs.jdbc.output.driver="DRIVER" ` --templateProperty gcs.jdbc.spark.partitions="NUM_PARTITIONS" ` --templateProperty gcs.jdbc.output.batchInsertSize="BATCH_SIZE"
Windows (cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --project="PROJECT_ID" ^ --region="REGION" ^ --version="1.2" ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ^ --subnet="SUBNET" ^ --kms-key="KMS_KEY" ^ --service-account="SERVICE_ACCOUNT" ^ --properties="PROPERTY=PROPERTY_VALUE" ^ --labels="LABEL=LABEL_VALUE" ^ -- --template=GCSTOJDBC ^ --templateProperty project.id="PROJECT_ID" ^ --templateProperty log.level="LOG_LEVEL" ^ --templateProperty gcs.jdbc.input.location="CLOUD_STORAGE_PATH" ^ --templateProperty gcs.jdbc.input.format="FORMAT" ^ --templateProperty gcs.jdbc.output.saveMode="MODE" ^ --templateProperty gcs.jdbc.output.url="JDBC_CONNECTION_URL" ^ --templateProperty gcs.jdbc.output.table="JDBC_TABLE" ^ --templateProperty gcs.jdbc.output.driver="DRIVER" ^ --templateProperty gcs.jdbc.spark.partitions="NUM_PARTITIONS" ^ --templateProperty gcs.jdbc.output.batchInsertSize="BATCH_SIZE"
REST
Before using any of the request data, make the following replacements:
- PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
- REGION: Required. Compute Engine region.
- SUBNET: Optional. If a subnet is not specified, the subnet
in the specified REGION in the
default
network is selected.Example:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage
path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download
JDBC connectors for uploading to Cloud Storage:
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- CLOUD_STORAGE_PATH: Required. Cloud Storage
path where input files are stored.
Example:
gs://dataproc-templates/cloud_storage_to_jdbc_input
- FORMAT: Required. Output data format. Options:
avro
,parquet
,csv
ororc
. Default:avro
. Note: Ifavro
, you must add "file:///usr/lib/spark/connector/spark-avro.jar
" to thejars
gcloud CLI flag or API field.Example (the
file://
prefix references a Dataproc Serverless jar file):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - MODE: Optional. Write mode for Cloud Storage output.
Options:
Append
,Overwrite
,Ignore
, orErrorIfExists
. Default:ErrorIfExists
. - The following variables are used to construct the required
JDBC_CONNECTION_URL:
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE, or, for Oracle, JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
Construct the JDBC_CONNECTION_URL using one of the following connector-specific formats:
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Postgres SQL:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Microsoft SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=
- JDBC_TABLE: Required. Table name where output will be written.
- DRIVER: Required. The JDBC driver that is used for
the connection:
- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- TEMPLATE_VERSION: Required. Specify
latest
for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta
(visit gs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries
to list available template versions). - LOG_LEVEL: Optional. Level of logging. Can be one of
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
, orWARN
. Default:INFO
. - NUM_PARTITIONS: Optional. The maximum number of
partitions that can be used for parallelism of table writes.
If specified, this value is used for the JDBC output connection. Defaults to the initial partitions set by Spark
read()
. - BATCH_SIZE: Optional. Number of records to insert per round trip. Default:
1000
. - SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
- PROPERTY and PROPERTY_VALUE:
Optional. Comma-separated list of
Spark property=
value
pairs. - LABEL and LABEL_VALUE:
Optional. Comma-separated list of
label
=value
pairs. -
KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed key.
Example:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
HTTP method and URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches
Request JSON body:
{ "environmentConfig": { "executionConfig": { "subnetworkUri": "SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch": { "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate", "args": [ "--template=GCSTOJDBC", "--templateProperty","project.id=PROJECT_ID", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","gcs.jdbc.input.location=CLOUD_STORAGE_PATH", "--templateProperty","gcs.jdbc.input.format=FORMAT", "--templateProperty","gcs.jdbc.output.saveMode=MODE", "--templateProperty","gcs.jdbc.output.url=JDBC_CONNECTION_URL", "--templateProperty","gcs.jdbc.output.table=JDBC_TABLE", "--templateProperty","gcs.jdbc.output.driver=DRIVER", "--templateProperty","gcs.jdbc.spark.partitions=NUM_PARTITIONS", "--templateProperty","gcs.jdbc.output.batchInsertSize=BATCH_SIZE" ], "jarFileUris": [ "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar", "JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ] } }
To send your request, expand one of these options:
You should receive a JSON response similar to the following:
{ "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }