- 3.52.0 (latest)
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public enum ExplanationMetadata.InputMetadata.Encoding extends Enum<ExplanationMetadata.InputMetadata.Encoding> implements ProtocolMessageEnum
Defines how a feature is encoded. Defaults to IDENTITY.
Protobuf enum google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding
Implements
ProtocolMessageEnumStatic Fields
Name | Description |
BAG_OF_FEATURES | The tensor represents a bag of features where each index maps to
a feature. InputMetadata.index_feature_mapping must be provided for
this encoding. For example:
|
BAG_OF_FEATURES_SPARSE | The tensor represents a bag of features where each index maps to a
feature. Zero values in the tensor indicates feature being
non-existent. InputMetadata.index_feature_mapping must be provided
for this encoding. For example:
|
BAG_OF_FEATURES_SPARSE_VALUE | The tensor represents a bag of features where each index maps to a
feature. Zero values in the tensor indicates feature being
non-existent. InputMetadata.index_feature_mapping must be provided
for this encoding. For example:
|
BAG_OF_FEATURES_VALUE | The tensor represents a bag of features where each index maps to
a feature. InputMetadata.index_feature_mapping must be provided for
this encoding. For example:
|
COMBINED_EMBEDDING | The tensor is encoded into a 1-dimensional array represented by an
encoded tensor. InputMetadata.encoded_tensor_name must be provided
for this encoding. For example:
|
COMBINED_EMBEDDING_VALUE | The tensor is encoded into a 1-dimensional array represented by an
encoded tensor. InputMetadata.encoded_tensor_name must be provided
for this encoding. For example:
|
CONCAT_EMBEDDING | Select this encoding when the input tensor is encoded into a
2-dimensional array represented by an encoded tensor.
InputMetadata.encoded_tensor_name must be provided for this
encoding. The first dimension of the encoded tensor's shape is the same
as the input tensor's shape. For example:
|
CONCAT_EMBEDDING_VALUE | Select this encoding when the input tensor is encoded into a
2-dimensional array represented by an encoded tensor.
InputMetadata.encoded_tensor_name must be provided for this
encoding. The first dimension of the encoded tensor's shape is the same
as the input tensor's shape. For example:
|
ENCODING_UNSPECIFIED | Default value. This is the same as IDENTITY. |
ENCODING_UNSPECIFIED_VALUE | Default value. This is the same as IDENTITY. |
IDENTITY | The tensor represents one feature. |
IDENTITY_VALUE | The tensor represents one feature. |
INDICATOR | The tensor is a list of binaries representing whether a feature exists
or not (1 indicates existence). InputMetadata.index_feature_mapping
must be provided for this encoding. For example:
|
INDICATOR_VALUE | The tensor is a list of binaries representing whether a feature exists
or not (1 indicates existence). InputMetadata.index_feature_mapping
must be provided for this encoding. For example:
|
UNRECOGNIZED |
Static Methods
Name | Description |
forNumber(int value) | |
getDescriptor() | |
internalGetValueMap() | |
valueOf(Descriptors.EnumValueDescriptor desc) | |
valueOf(int value) | Deprecated. Use #forNumber(int) instead. |
valueOf(String name) | |
values() |
Methods
Name | Description |
getDescriptorForType() | |
getNumber() | |
getValueDescriptor() |