public static final class ExplanationMetadata.Builder extends GeneratedMessageV3.Builder<ExplanationMetadata.Builder> implements ExplanationMetadataOrBuilder
Metadata describing the Model's input and output for explanation.
Protobuf type google.cloud.aiplatform.v1beta1.ExplanationMetadata
Inherited Members
com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
Static Methods
public static final Descriptors.Descriptor getDescriptor()
Returns
Methods
public ExplanationMetadata.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public ExplanationMetadata build()
Returns
public ExplanationMetadata buildPartial()
Returns
public ExplanationMetadata.Builder clear()
Returns
Overrides
public ExplanationMetadata.Builder clearFeatureAttributionsSchemaUri()
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
Returns
public ExplanationMetadata.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
public ExplanationMetadata.Builder clearInputs()
Returns
public ExplanationMetadata.Builder clearLatentSpaceSource()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
Returns
public ExplanationMetadata.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
public ExplanationMetadata.Builder clearOutputs()
Returns
public ExplanationMetadata.Builder clone()
Returns
Overrides
public boolean containsInputs(String key)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public boolean containsOutputs(String key)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public ExplanationMetadata getDefaultInstanceForType()
Returns
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
public String getFeatureAttributionsSchemaUri()
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
Returns
Type | Description |
String | The featureAttributionsSchemaUri.
|
public ByteString getFeatureAttributionsSchemaUriBytes()
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
Returns
Type | Description |
ByteString | The bytes for featureAttributionsSchemaUri.
|
public Map<String,ExplanationMetadata.InputMetadata> getInputs()
Returns
public int getInputsCount()
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public Map<String,ExplanationMetadata.InputMetadata> getInputsMap()
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public ExplanationMetadata.InputMetadata getInputsOrDefault(String key, ExplanationMetadata.InputMetadata defaultValue)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameters
Returns
public ExplanationMetadata.InputMetadata getInputsOrThrow(String key)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public String getLatentSpaceSource()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
Returns
Type | Description |
String | The latentSpaceSource.
|
public ByteString getLatentSpaceSourceBytes()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
Returns
Type | Description |
ByteString | The bytes for latentSpaceSource.
|
public Map<String,ExplanationMetadata.InputMetadata> getMutableInputs()
Use alternate mutation accessors instead.
Returns
public Map<String,ExplanationMetadata.OutputMetadata> getMutableOutputs()
Use alternate mutation accessors instead.
Returns
public Map<String,ExplanationMetadata.OutputMetadata> getOutputs()
Returns
public int getOutputsCount()
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public Map<String,ExplanationMetadata.OutputMetadata> getOutputsMap()
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public ExplanationMetadata.OutputMetadata getOutputsOrDefault(String key, ExplanationMetadata.OutputMetadata defaultValue)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameters
Returns
public ExplanationMetadata.OutputMetadata getOutputsOrThrow(String key)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
protected MapField internalGetMapField(int number)
Parameter
Returns
Overrides
protected MapField internalGetMutableMapField(int number)
Parameter
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public ExplanationMetadata.Builder mergeFrom(ExplanationMetadata other)
Parameter
Returns
public ExplanationMetadata.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
public ExplanationMetadata.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
public final ExplanationMetadata.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
public ExplanationMetadata.Builder putAllInputs(Map<String,ExplanationMetadata.InputMetadata> values)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public ExplanationMetadata.Builder putAllOutputs(Map<String,ExplanationMetadata.OutputMetadata> values)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public ExplanationMetadata.Builder putInputs(String key, ExplanationMetadata.InputMetadata value)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameters
Returns
public ExplanationMetadata.Builder putOutputs(String key, ExplanationMetadata.OutputMetadata value)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameters
Returns
public ExplanationMetadata.Builder removeInputs(String key)
Required. Map from feature names to feature input metadata. Keys are the name of the
features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in ExplanationMetadata.inputs. The baseline
of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions are keyed by
this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public ExplanationMetadata.Builder removeOutputs(String key)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public ExplanationMetadata.Builder setFeatureAttributionsSchemaUri(String value)
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
Parameter
Name | Description |
value | String
The featureAttributionsSchemaUri to set.
|
Returns
public ExplanationMetadata.Builder setFeatureAttributionsSchemaUriBytes(ByteString value)
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
Parameter
Name | Description |
value | ByteString
The bytes for featureAttributionsSchemaUri to set.
|
Returns
public ExplanationMetadata.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public ExplanationMetadata.Builder setLatentSpaceSource(String value)
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
Parameter
Name | Description |
value | String
The latentSpaceSource to set.
|
Returns
public ExplanationMetadata.Builder setLatentSpaceSourceBytes(ByteString value)
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
Parameter
Name | Description |
value | ByteString
The bytes for latentSpaceSource to set.
|
Returns
public ExplanationMetadata.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
public final ExplanationMetadata.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides