Deploy and serve Llama 2 models on TPU v5e using SAX


This tutorial guides you through:

  • Creating a Cloud TPU VM to deploy the Llama 2 family of large language models (LLMs), available in different sizes (7B, 13B, or 70B)
  • Preparing checkpoints for the models and deploying them on SAX
  • Interacting with the model through an HTTP endpoint

Serving for AGI Experiments (SAX) is an experimental system that serves Paxml, JAX, and PyTorch models for inference. Code and documentation for SAX are in the Saxml Git repository. The current stable version with TPU v5e support is v1.1.0.

About SAX cells

A SAX cell (or cluster) is the core unit for serving your models. It consists of two main parts:

  • Admin server: This server keeps track of your model servers, assigns models to those model servers, and helps clients find the right model server to interact with.
  • Model servers: These servers run your model. They're responsible for processing incoming requests and generating responses.

The following diagram shows a diagram of a SAX cell:

SAX cell with admin server and model
servers

Figure 1. SAX cell with admin server and model server.

You can interact with a SAX cell using clients written in Python, C++, or Go, or directly through an HTTP server. The following diagram shows how an external client can interact with a SAX cell:

An external client and an HTTP endpoint interacting with a SAX
cell

Figure 2. Runtime architecture of an external client interacting with a SAX cell.

Objectives

  • Set up TPU resources for serving
  • Create a SAX cluster
  • Publish the Llama 2 model
  • Interact with the model

Costs

In this document, you use the following billable components of Google Cloud:

  • Cloud TPU
  • Compute Engine
  • Cloud Storage

To generate a cost estimate based on your projected usage, use the pricing calculator. New Google Cloud users might be eligible for a free trial.

Before you begin

Set up your Google Cloud project, activate the Cloud TPU API, and create a service account by following the instructions in Set up the Cloud TPU environment.

Create a TPU

The following steps show how to create a TPU VM, which will serve your model.

  1. Create environment variables:

    export PROJECT_ID=PROJECT_ID
    export ACCELERATOR_TYPE=ACCELERATOR_TYPE
    export ZONE=ZONE
    export RUNTIME_VERSION=v2-alpha-tpuv5-lite
    export SERVICE_ACCOUNT=SERVICE_ACCOUNT
    export TPU_NAME=TPU_NAME
    export QUEUED_RESOURCE_ID=QUEUED_RESOURCE_ID
    

    Environment variable descriptions

    PROJECT_ID
    The ID of your Google Cloud project.
    ACCELERATOR_TYPE
    The accelerator type specifies the version and size of the Cloud TPU you want to create. Different Llama 2 model sizes have different TPU size requirements:
    • 7B: v5litepod-4 or larger
    • 13B: v5litepod-8 or larger
    • 70B: v5litepod-16 or larger
    ZONE
    The zone where you want to create your Cloud TPU.
    SERVICE_ACCOUNT
    The service account you want to attach to your Cloud TPU.
    TPU_NAME
    The name for your Cloud TPU.
    QUEUED_RESOURCE_ID
    An identifier for your queued resource request.
  2. Set the project ID and zone in your active Google Cloud CLI configuration:

    gcloud config set project $PROJECT_ID  && gcloud config set compute/zone $ZONE
    
  3. Create the TPU VM:

    gcloud compute tpus queued-resources create ${QUEUED_RESOURCE_ID} \
      --node-id ${TPU_NAME} \
      --project ${PROJECT_ID} \
      --zone ${ZONE} \
      --accelerator-type ${ACCELERATOR_TYPE} \
      --runtime-version ${RUNTIME_VERSION} \
      --service-account ${SERVICE_ACCOUNT}
    
  4. Check that the TPU is active:

    gcloud compute tpus queued-resources list --project $PROJECT_ID --zone $ZONE
    

Set up checkpoint conversion node

To run the LLama models on a SAX cluster, you need to convert the original Llama checkpoints to a SAX-compatible format.

The conversion requires significant memory resources, depending on the model size:

Model Machine type
7B 50-60 GB memory
13B 120 GB memory
70B 500-600 GB memory (N2 or M1 machine type)

For the 7B and the 13B model, you can run the conversion on the TPU VM. For the 70B model, you need to create a Compute Engine instance with approximately 1TB of disk space:

gcloud compute instances create INSTANCE_NAME --project=$PROJECT_ID --zone=$ZONE \
  --machine-type=n2-highmem-128 \
  --network-interface=network-tier=PREMIUM,stack-type=IPV4_ONLY,subnet=default \
  --maintenance-policy=MIGRATE --provisioning-model=STANDARD \
  --service-account=$SERVICE_ACCOUNT \
  --scopes=https://www.googleapis.com/auth/cloud-platform \
  --tags=http-server,https-server \
  --create-disk=auto-delete=yes,boot=yes,device-name=bk-workday-dlvm,image=projects/ml-images/global/images/c0-deeplearning-common-cpu-v20230925-debian-10,mode=rw,size=500,type=projects/$PROJECT_ID/zones/$ZONE/diskTypes/pd-balanced \
  --no-shielded-secure-boot \
  --shielded-vtpm \
  --shielded-integrity-monitoring \
  --labels=goog-ec-src=vm_add-gcloud \
  --reservation-affinity=any

Whether you use a TPU or Compute Engine instance as your conversion server, set up your server to convert the Llama 2 checkpoints:

  1. For the 7B and the 13B model, set the server name environment variable to the name of your TPU:

    export CONV_SERVER_NAME=$TPU_NAME
    

    For the 70B model, set the server name environment variable to the name of your Compute Engine instance:

    export CONV_SERVER_NAME=INSTANCE_NAME
    
  2. Connect to the conversion node using SSH.

    If your conversion node is a TPU, connect to the TPU:

    gcloud compute tpus tpu-vm ssh $CONV_SERVER_NAME --project=$PROJECT_ID --zone=$ZONE
    

    If your conversion node is a Compute Engine instance, connect to the Compute Engine VM:

    gcloud compute ssh $CONV_SERVER_NAME --project=$PROJECT_ID --zone=$ZONE
    
  3. Install required packages on the conversion node:

    sudo apt update
    sudo apt-get install python3-pip
    sudo apt-get install git-all
    
    pip3 install paxml==1.1.0
    pip3 install torch
    pip3 install jaxlib==0.4.14
    
  4. Download the Llama checkpoint conversion script:

    gcloud storage cp gs://cloud-tpu-inference-public/sax-tokenizers/llama/convert_llama_ckpt.py .
    

Download Llama 2 weights

Before converting the model, you need to download the Llama 2 weights. For this tutorial, you must use the original Llama 2 weights (for example, meta-llama/Llama-2-7b) and not the weights that have been converted for the Hugging Face Transformers format (for example, meta-llama/Llama-2-7b-hf).

If you already have the Llama 2 weights, skip ahead to Convert the weights.

To download the weights from the Hugging Face hub, you need to set up a user access token and request access to the Llama 2 models. To request access, follow the instructions on the Hugging Face page for the model you want to use, for example, meta-llama/Llama-2-7b.

  1. Create a directory for the weights:

    sudo mkdir WEIGHTS_DIRECTORY
    
  2. Get the Llama2 weights from the Hugging Face hub:

    1. Install the Hugging Face hub CLI:

      pip install -U "huggingface_hub[cli]"
      
    2. Change to the weights directory:

      cd WEIGHTS_DIRECTORY
      
    3. Download the Llama 2 files:

      python3
      from huggingface_hub import login
      login()
      from huggingface_hub import hf_hub_download, snapshot_download
      import os
      PATH=os.getcwd()
      snapshot_download(repo_id="meta-llama/LLAMA2_REPO", local_dir_use_symlinks=False, local_dir=PATH)
      

      Replace LLAMA2_REPO with the name of the Hugging Face repository you want to download from: Llama-2-7b, Llama-2-13b, or Llama-2-70b.

Convert the weights

Edit the conversion script, then run the conversion script to convert the model weights.

  1. Create a directory to hold the converted weights:

    sudo mkdir CONVERTED_WEIGHTS
    
  2. Clone the Saxml GitHub repository in a directory where you have read, write, and execute permissions:

      git clone https://github.com/google/saxml.git -b r1.1.0
    
  3. Change to the saxml directory:

    cd saxml
    
  4. Open the saxml/tools/convert_llama_ckpt.py file.

  5. In the saxml/tools/convert_llama_ckpt.py file, change line 169 from:

    'scale': pytorch_vars[0]['layers.%d.attention_norm.weight' % (layer_idx)].type(torch.float16).numpy()
    

    To:

    'scale': pytorch_vars[0]['norm.weight'].type(torch.float16).numpy()
    
  6. Run the saxml/tools/init_cloud_vm.sh script:

    saxml/tools/init_cloud_vm.sh
    
  7. For 70B only: Turn test mode off:

    1. Open the saxml/server/pax/lm/params/lm_cloud.py file.
    2. In the saxml/server/pax/lm/params/lm_cloud.py file, change line 344 from:

      return True
      

      To:

      return False
      
  8. Convert the weights:

    python3 saxml/tools/convert_llama_ckpt.py --base-model-path WEIGHTS_DIRECTORY \
      --pax-model-path CONVERTED_WEIGHTS \
      --model-size MODEL_SIZE
    

    Replace the following:

    • WEIGHTS_DIRECTORY: Directory for the original weights.
    • CONVERTED_WEIGHTS: Target path for the converted weights.
    • MODEL_SIZE: 7b, 13b, or 70b.

Prepare the checkpoint directory

After you convert the checkpoints, the checkpoint directory should have the following structure:

checkpoint_00000000
  metadata/
      metadata
    state/
        mdl_vars.params.lm*/
        ...
        ...
        step/

Create an empty file named commit_success.txt and put a copy of it in the checkpoint_00000000, metadata, and state directories. This lets SAX know that this checkpoint is fully converted and ready to load:

  1. Change to the checkpoint directory:

    cd CONVERTED_WEIGHTS/checkpoint_00000000
    
  2. Create an empty file named commit_success.txt:

    touch commit_success.txt
    
  3. Change to the metadata directory and create an empty file named commit_success.txt:

    cd metadata && touch commit_success.txt
    
  4. Change to the state directory and create an empty file named commit_success.txt:

    cd .. && cd state && touch commit_success.txt
    

The checkpoint directory should now have the following structure:

checkpoint_00000000
    commit_success.txt
metadata/
    commit_success.txt
    metadata
    state/
        commit_success.txt
        mdl_vars.params.lm*/
        ...
        ...
        step/

Create a Cloud Storage bucket

You need to store the converted checkpoints in a Cloud Storage bucket so that they're available when publishing the model.

  1. Set an environment variable for the name of your Cloud Storage bucket:

    export GSBUCKET=BUCKET_NAME
    
  2. Create a bucket:

    gcloud storage buckets create gs://${GSBUCKET}
    
  3. Copy your converted checkpoint files to your bucket:

    gcloud storage cp -r CONVERTED_WEIGHTS/checkpoint_00000000  gs://$GSBUCKET/sax_models/llama2/SAX_LLAMA2_DIR/
    

    Replace SAX_LLAMA2_DIR with the appropriate value:

    • 7B: saxml_llama27b
    • 13B: saxml_llama213b
    • 70B: saxml_llama270b

Create SAX cluster

To create a SAX cluster, you need to:

In a typical deployment, you would run the admin server on a Compute Engine instance, and the model server on a TPU or a GPU. For the purpose of this tutorial, you will deploy the admin server and the model server on the same TPU v5e instance.

Create admin server

Create the admin server Docker container:

  1. On the conversion server, install Docker:

    sudo apt-get update
    sudo apt-get install docker.io
    
  2. Launch the admin server Docker container:

    sudo docker run --name sax-admin-server \
      -it \
      -d \
      --rm \
      --network host \
      --env GSBUCKET=${GSBUCKET} us-docker.pkg.dev/cloud-tpu-images/inference/sax-admin-server:v1.1.0
    

You can run the docker run command without the -d option to view the logs and ensure that the admin server starts correctly.

Create model server

The following sections show how to create a model server.

7b model

Launch the model server Docker container:

sudo docker run --privileged \
  -it \
  -d \
  --rm \
  --network host \
  --name "sax-model-server" \
  --env SAX_ROOT=gs://${GSBUCKET}/sax-root us-docker.pkg.dev/cloud-tpu-images/inference/sax-model-server:v1.1.0 \
  --sax_cell="/sax/test" \
  --port=10001 \
  --platform_chip=tpuv5e \
  --platform_topology='4'

13b model

The configuration for LLaMA13BFP16TPUv5e is missing from lm_cloud.py. The following steps show how to update lm_cloud.py and commit a new Docker image.

  1. Start the model server:

    sudo docker run --privileged \
      -it \
      -d \
      --rm \
      --network host \
      --name "sax-model-server" \
      --env SAX_ROOT=gs://${GSBUCKET}/sax-root \
      us-docker.pkg.dev/cloud-tpu-images/inference/sax-model-server:v1.1.0 \
      --sax_cell="/sax/test" \
      --port=10001 \
      --platform_chip=tpuv5e \
      --platform_topology='8'
    
  2. Connect to the Docker container using SSH:

    sudo docker exec -it sax-model-server bash
    
  3. Install Vim in the Docker image:

    $ apt update
    $ apt install vim
    
  4. Open the saxml/server/pax/lm/params/lm_cloud.py file. Search for LLaMA13B. You should see the following code:

    @servable_model_registry.register
    @quantization.for_transformer(quantize_on_the_fly=False)
    class LLaMA13B(BaseLLaMA):
      """13B model on a A100-40GB.
    
      April 12, 2023
      Latency = 5.06s with 128 decoded tokens. 38ms per output token.
      """
    
      NUM_LAYERS = 40
      VOCAB_SIZE = 32000
      DIMS_PER_HEAD = 128
      NUM_HEADS = 40
      MODEL_DIMS = 5120
      HIDDEN_DIMS = 13824
      ICI_MESH_SHAPE = [1, 1, 1]
    
      @property
      def test_mode(self) -> bool:
        return True
    
  5. Comment or delete the line that begins with @quantization. After this change, the file should look like the following:

    @servable_model_registry.register
    class LLaMA13B(BaseLLaMA):
      """13B model on a A100-40GB.
    
      April 12, 2023
      Latency = 5.06s with 128 decoded tokens. 38ms per output token.
      """
    
      NUM_LAYERS = 40
      VOCAB_SIZE = 32000
      DIMS_PER_HEAD = 128
      NUM_HEADS = 40
      MODEL_DIMS = 5120
      HIDDEN_DIMS = 13824
      ICI_MESH_SHAPE = [1, 1, 1]
    
      @property
      def test_mode(self) -> bool:
        return True
    
  6. Add the following code to support the TPU configuration.

    @servable_model_registry.register
    class LLaMA13BFP16TPUv5e(LLaMA13B):
    """13B model on TPU v5e-8.
    
    """
    
    BATCH_SIZE = [1]
    BUCKET_KEYS = [128]
    MAX_DECODE_STEPS = [32]
    ENABLE_GENERATE_STREAM = False
    
    ICI_MESH_SHAPE = [1, 1, 8]
    
    @property
    def test_mode(self) -> bool:
      return False
    
  7. Exit the Docker container SSH session:

    exit
    
  8. Commit the changes to a new Docker image:

    sudo docker commit sax-model-server sax-model-server:v1.1.0-mod
    
  9. Check that the new Docker image is created:

    sudo docker images
    

    You can publish the Docker image to your project's Artifact Registry, but this tutorial will proceed with the local image.

  10. Stop the model server. The rest of the tutorial will use the updated model server.

    sudo docker stop sax-model-server
    
  11. Start the model server using the updated Docker image. Be sure to specify the updated image name, sax-model-server:v1.1.0-mod:

    sudo docker run --privileged \
      -it \
      -d \
      --rm \
      --network host \
      --name "sax-model-server" \
      --env SAX_ROOT=gs://${GSBUCKET}/sax-root \
      sax-model-server:v1.1.0-mod \
      --sax_cell="/sax/test" \
      --port=10001 \
      --platform_chip=tpuv5e \
      --platform_topology='8'
    

70B model

Connect to your TPU using SSH and start the model server:

gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
 --project ${PROJECT_ID} \
 --zone ${ZONE} \
 --worker=all \
 --command="
   gcloud auth configure-docker \
     us-docker.pkg.dev
   # Pull SAX model server image
   sudo docker pull us-docker.pkg.dev/cloud-tpu-images/inference/sax-model-server:v1.1.0
   # Run model server
   sudo docker run \
     --privileged  \
     -it \
     -d \
     --rm \
     --network host \
     --name "sax-model-server"  \
     --env SAX_ROOT=gs://${GSBUCKET}/sax-root \
     us-docker.pkg.dev/cloud-tpu-images/inference/sax-model-server:v1.1.0 \
     --sax_cell="/sax/test" \
     --port=10001 \
     --platform_chip=tpuv5e \
     --platform_topology='16'
"

Check logs

Check the model server logs to make sure that the model server has started properly:

docker logs -f sax-model-server

If the model server didn't start, see the Troubleshoot section for more information.

For the 70B model, repeat these steps for each TPU VM:

  1. Connect to the TPU using SSH:

    gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
      --project ${PROJECT_ID} \
      --zone ${ZONE} \
      --worker=WORKER_NUMBER
    

    WORKER_NUMBER is a 0-based index, indicating which TPU VM you want to connect to.

  2. Check the logs:

    sudo docker logs -f sax-model-server
    

    Three TPU VMs should show that they have connected to the other instances:

    I1117 00:16:07.196594 140613973207936 multi_host_sync.py:152] Received SPMD peer address 10.182.0.3:10001
    I1117 00:16:07.197484 140613973207936 multi_host_sync.py:152] Received SPMD peer address 10.182.0.87:10001
    I1117 00:16:07.199437 140613973207936 multi_host_sync.py:152] Received SPMD peer address 10.182.0.13:10001
    

    One of the TPU VMs should have logs that show the model server starting:

    I1115 04:01:29.479170 139974275995200 model_service_base.py:867] Started joining SAX cell /sax/test
    ERROR: logging before flag.Parse: I1115 04:01:31.479794       1 location.go:141] Calling Join due to address update
    ERROR: logging before flag.Parse: I1115 04:01:31.814721       1 location.go:155] Joined 10.182.0.44:10000
    

Publish the model

SAX comes with a command-line tool called saxutil, which simplifies interacting with SAX model servers. In this tutorial, you use saxutil to publish the model. For the full list of saxutil commands, see the Saxml README file.

  1. Change to the directory where you cloned the Saxml GitHub repository:

    cd  saxml
    
  2. For the 70B model, connect to your conversion server:

    gcloud compute ssh ${CONV_SERVER_NAME} \
      --project ${PROJECT_ID} \
      --zone ${ZONE}
    
  3. Install Bazel:

    sudo apt-get install bazel
    
  4. Set an alias for running saxutil with your Cloud Storage bucket:

    alias saxutil='bazel run saxml/bin:saxutil -- --sax_root=gs://${GSBUCKET}/sax-root'
    
  5. Publish the model using saxutil. This takes about 10 minutes on a TPU v5litepod-8.

    saxutil --sax_root=gs://${GSBUCKET}/sax-root publish '/sax/test/MODEL' \
        saxml.server.pax.lm.params.lm_cloud.PARAMETERS \
        gs://${GSBUCKET}/sax_models/llama2/SAX_LLAMA2_DIR/checkpoint_00000000/ \
        1
    

    Replace the following variables:

    Model size Values
    7B MODEL: llama27b
    PARAMETERS: saxml.server.pax.lm.params.lm_cloud.LLaMA7BFP16TPUv5e
    SAX_LLAMA2_DIR: saxml_llama27b
    13B MODEL: llama213b
    PARAMETERS: saxml.server.pax.lm.params.lm_cloud.LLaMA13BFP16TPUv5e
    SAX_LLAMA2_DIR: saxml_llama213b
    70B MODEL: llama270b
    PARAMETERS: saxml.server.pax.lm.params.lm_cloud.LLaMA70BFP16TPUv5e
    SAX_LLAMA2_DIR: saxml_llama270b

Test deployment

To check if deployment has succeeded, use the saxutil ls command:

saxutil ls /sax/test/MODEL

A successful deployment should have a number of replicas greater than zero and look similar to the following:

INFO: Running command line: bazel-bin/saxml/bin/saxutil_/saxutil '--sax_rootmgs://sax-admin2/sax-root is /sax/test/1lama27b

+----------+-------------------------------------------------------+-----------------------------------------------------------------------+---------------+---------------------------+
| MODEL    | MODEL PATH                                            | CHECKPOINT PATH                                                       | # OF REPLICAS | (SELECTED) REPLICAADDRESS |
+----------+-------------------------------------------------------+-----------------------------------------------------------------------+---------------+---------------------------+
| llama27b | saxml.server.pax.lm.params.lm_cloud.LLaMA7BFP16TPUv5e | gs://${MODEL_BUCKET}/sax_models/llama2/7b/pax_7B/checkpoint_00000000/ | 1             | 10.182.0.28:10001         |
+----------+-------------------------------------------------------+-----------------------------------------------------------------------+---------------+---------------------------+

The Docker logs for the model server will be similar to the following:

I1114 17:31:03.586631 140003787142720 model_service_base.py:532] Successfully loaded model for key: /sax/test/llama27b

INFO: Running command line: bazel-bin/saxml/bin/saxutil_/saxutil '--sax_rootmgs://sax-admin2/sax-root is /sax/test/1lama27b

Troubleshoot

If the deployment fails, check the model server logs:

sudo docker logs -f sax-model-server

For a successful deployment, you should see the following output:

Successfully loaded model for key: /sax/test/llama27b

If the logs don't show that the model was deployed, check the model configuration and the path to your model checkpoint.

Generate responses

You can use the saxutil tool to generate responses to prompts.

Generate responses to a question:

saxutil lm.generate -extra="temperature:0.2"  /sax/test/MODEL "Q: Who is Harry Potter's mother? A:"

The output should be similar to the following:

INFO: Running command line: bazel-bin/saxml/bin/saxutil_/saxutil '--sax_rootmgs://sax-admin2/sax-root' lm.generate /sax/test/llama27b 'Q: Who is Harry Potter's mother? A: `
+-------------------------------+------------+
| GENERATE                      | SCORE      |
+-------------------------------+------------+
| 1. Harry Potter's mother is   | -20.214787 |
| Lily Evans. 2. Harry Potter's |            |
| mother is Petunia Evans       |            |
| (Dursley).                    |            |
+-------------------------------+------------+

Interact with the model from a client

The SAX repository includes clients that you can use to interact with a SAX cell. Clients are available in C++, Python and Go. The following example shows how to build a Python client.

  1. Build the Python client:

    bazel build saxml/client/python:sax.cc --compile_one_dependency
    
  2. Add the client to PYTHONPATH. This example assumes that you have saxml under your home directory:

    export PYTHONPATH=${PYTHONPATH}:$HOME/saxml/bazel-bin/saxml/client/python/
    
  3. Interact with SAX from the Python shell:

    $ python3
    Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import sax
    >>>
    

Interact with the model from an HTTP endpoint

To interact with the model from an HTTP endpoint, create an HTTP client:

  1. Create a Compute Engine VM:

    export PROJECT_ID=PROJECT_ID
    export ZONE=ZONE
    export HTTP_SERVER_NAME=HTTP_SERVER_NAME
    export SERVICE_ACCOUNT=SERVICE_ACCOUNT
    export MACHINE_TYPE=e2-standard-8
    gcloud compute instances create $HTTP_SERVER_NAME --project=$PROJECT_ID --zone=$ZONE \
      --machine-type=$MACHINE_TYPE \
      --network-interface=network-tier=PREMIUM,stack-type=IPV4_ONLY,subnet=default \
      --maintenance-policy=MIGRATE --provisioning-model=STANDARD \
      --service-account=$SERVICE_ACCOUNT \
      --scopes=https://www.googleapis.com/auth/cloud-platform \
      --tags=http-server,https-server \
      --create-disk=auto-delete=yes,boot=yes,device-name=$HTTP_SERVER_NAME,image=projects/ml-images/global/images/c0-deeplearning-common-cpu-v20230925-debian-10,mode=rw,size=500,type=projects/$PROJECT_ID/zones/$ZONE/diskTypes/pd-balanced \
      --no-shielded-secure-boot \
      --shielded-vtpm \
      --shielded-integrity-monitoring \
      --labels=goog-ec-src=vm_add-gcloud \
      --reservation-affinity=any
    
  2. Connect to the Compute Engine VM using SSH:

    gcloud compute ssh $HTTP_SERVER_NAME --project=$PROJECT_ID --zone=$ZONE
    
  3. Clone the AI on GKE GitHub repository:

    git clone https://github.com/GoogleCloudPlatform/ai-on-gke.git
    
  4. Change to the HTTP server directory:

    cd ai-on-gke/tools/saxml-on-gke/httpserver
    
  5. Build the Docker file:

    docker build -f Dockerfile -t sax-http .
    
  6. Run the HTTP server:

    docker run -e SAX_ROOT=gs://${GSBUCKET}/sax-root -p 8888:8888 -it sax-http
    

Test your endpoint from your local machine or another server with access to port 8888 using the following commands:

  1. Export environment variables for your server's IP address and port:

    export LB_IP=HTTP_SERVER_EXTERNAL_IP
    export PORT=8888
    
  2. Set the JSON payload, containing the model and query:

    json_payload=$(cat  << EOF
    {
      "model": "/sax/test/MODEL",
      "query": "Example query"
    }
    EOF
    )
    
  3. Send the request:

    curl --request POST --header "Content-type: application/json" -s $LB_IP:$PORT/generate --data "$json_payload"
    

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.

When you are done with this tutorial, follow these steps to clean up your resources.

  1. Delete your Cloud TPU.

    $ gcloud compute tpus tpu-vm delete $TPU_NAME  --zone $ZONE
    
  2. Delete your Compute Engine instance, if you created one.

    gcloud compute instances delete INSTANCE_NAME
    
  3. Delete your Cloud Storage bucket and its contents.

    gcloud storage rm --recursive gs://BUCKET_NAME
    

What's next