Import data for video classification

Imports data for video classification using the import_data method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataVideoClassificationSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    importDataVideoClassification(gcsSourceUri, project, datasetId);
  }

  static void importDataVideoClassification(String gcsSourceUri, String project, String datasetId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "video_classification_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);

      DatasetName datasetName = DatasetName.of(project, location, datasetId);
      List<ImportDataConfig> importDataConfigs =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigs);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(1800, TimeUnit.SECONDS);

      System.out.format(
          "Import Data Video Classification Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// eg. 'gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]'
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataVideoClassification() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/video_classification_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();

  console.log(
    `Import data video classification response : \
      ${JSON.stringify(response.result)}`
  );
}
importDataVideoClassification();

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import aiplatform


def import_data_video_classification_sample(
    project: str,
    dataset_id: str,
    gcs_source_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 1800,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    import_configs = [
        {
            "gcs_source": {"uris": [gcs_source_uri]},
            "import_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/video_classification_io_format_1.0.0.yaml",
        }
    ]
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.import_data(name=name, import_configs=import_configs)
    print("Long running operation:", response.operation.name)
    import_data_response = response.result(timeout=timeout)
    print("import_data_response:", import_data_response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.