Generate text by using a Gemini model and the ML.GENERATE_TEXT function
This tutorial shows you how to create a
remote model
that's based on the
gemini-1.0-pro-002
model,
and then how to use that model with the
ML.GENERATE_TEXT
function
to extract keywords from and perform sentiment analysis on movie reviews from
the bigquery-public-data.imdb.reviews
public table.
Required permissions
- To create the dataset, you need the
bigquery.datasets.create
Identity and Access Management (IAM) permission. To create the connection resource, you need the following IAM permissions:
bigquery.connections.create
bigquery.connections.get
To grant permissions to the connection's service account, you need the following permission:
resourcemanager.projects.setIamPolicy
To create the model, you need the following permissions:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.connections.delegate
To run inference, you need the following permissions:
bigquery.models.getData
bigquery.jobs.create
Costs
In this document, you use the following billable components of Google Cloud:
- BigQuery ML: You incur costs for the data that you process in BigQuery.
- Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.
To generate a cost estimate based on your projected usage,
use the pricing calculator.
For more information about BigQuery pricing, see BigQuery pricing in the BigQuery documentation.
For more information about Vertex AI pricing, see the Vertex AI pricing page.
Before you begin
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Create a dataset
Create a BigQuery dataset to store your ML model:
In the Google Cloud console, go to the BigQuery page.
In the Explorer pane, click your project name.
Click
View actions > Create dataset.On the Create dataset page, do the following:
For Dataset ID, enter
bqml_tutorial
.For Location type, select Multi-region, and then select US (multiple regions in United States).
The public datasets are stored in the
US
multi-region. For simplicity, store your dataset in the same location.Leave the remaining default settings as they are, and click Create dataset.
Create a connection
Create a Cloud resource connection and get the connection's service account. Create the connection in the same location as the dataset you created in the previous step.
Select one of the following options:
Console
Go to the BigQuery page.
To create a connection, click
Add, and then click Connections to external data sources.In the Connection type list, select Vertex AI remote models, remote functions and BigLake (Cloud Resource).
In the Connection ID field, enter a name for your connection.
Click Create connection.
Click Go to connection.
In the Connection info pane, copy the service account ID for use in a later step.
bq
In a command-line environment, create a connection:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
The
--project_id
parameter overrides the default project.Replace the following:
REGION
: your connection regionPROJECT_ID
: your Google Cloud project IDCONNECTION_ID
: an ID for your connection
When you create a connection resource, BigQuery creates a unique system service account and associates it with the connection.
Troubleshooting: If you get the following connection error, update the Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Retrieve and copy the service account ID for use in a later step:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
The output is similar to the following:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Append the following section into your main.tf
file.
## This creates a cloud resource connection. ## Note: The cloud resource nested object has only one output only field - serviceAccountId. resource "google_bigquery_connection" "connection" { connection_id = "CONNECTION_ID" project = "PROJECT_ID" location = "REGION" cloud_resource {} }Replace the following:
CONNECTION_ID
: an ID for your connectionPROJECT_ID
: your Google Cloud project IDREGION
: your connection region
Grant permissions to the connection's service account
Grant the connection's service account the Vertex AI User role. You must grant this role in the same project you created or selected in the
Before you begin section. Granting the role in a different project results in the error bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource
.
To grant the role, follow these steps:
Go to the IAM & Admin page.
Click
Grant Access.In the New principals field, enter the service account ID that you copied earlier.
In the Select a role field, choose Vertex AI, and then select Vertex AI User role.
Click Save.
Create the remote model
Create a remote model that represents a hosted Vertex AI model:
In the Google Cloud console, go to the BigQuery page.
In the query editor, run the following statement:
CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS (ENDPOINT = 'gemini-1.0-pro-002');
Replace the following:
LOCATION
: the connection locationCONNECTION_ID
: the ID of your BigQuery connectionWhen you view the connection details in the Google Cloud console, this is the value in the last section of the fully qualified connection ID that is shown in Connection ID, for example
projects/myproject/locations/connection_location/connections/myconnection
The query takes several seconds to complete, after which the model
gemini_model
appears in the bqml_tutorial
dataset in the Explorer pane.
Because the query uses a CREATE MODEL
statement to create a model, there
are no query results.
Perform keyword extraction
Perform keyword extraction on IMDB movie reviews by
using the remote model and the ML.GENERATE_TEXT
function:
In the Google Cloud console, go to the BigQuery page.
In the query editor, enter the following statement to perform keyword extraction on five movie reviews:
SELECT ml_generate_text_result['candidates'][0]['content'] AS generated_text, ml_generate_text_result['candidates'][0]['safety_ratings'] AS safety_ratings, * EXCEPT (ml_generate_text_result) FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT('Extract the key words from the text below: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
The output is similar to the following, with non-generated columns omitted for clarity:
+----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | generated_text | safety_ratings | ml_generate_text_status | prompt | ... | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Key words:\n\n* | [{"category":1,"probability":1, | | Extract the key words from | | | **Negative sentiment:** \"terribly | "probability_score":0.28856909, | | the text below: I had to | | | bad acting\", \"dumb story\", \"not | "severity":1,"severity_score":0.1510278}, | | see this on the British | | | even a kid would enjoy this\", | {"category":2,"probability":1, | | Airways plane. It was | | | \"something to switch off\"\n* | "probability_score":0.062445287, | | terribly bad acting and | | | **Context:** \"British Airways plane\" | "severity":1,"severity_score":0.10393038}, | | a dumb story. Not even | | | \n* **Genre:** \"movie\" (implied)... | {"category":3,"probability":2,... | | a kid would enjoy this... | | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Key words:\n\n* | [{"category":1,"probability":1, | | Extract the key words from | | | **Movie:** The Real Howard Spitz\n* | "probability_score":0.2995148,"severity":2, | | the text below: This is | | | **Genre:** Family movie\n* | "severity_score":0.22354652}, | | a family movie that was | | | **Broadcast:** ITV station, 1.00 am\n* | {"category":2,"probability":1," | | broadcast on my local | | | **Director:** Vadim Jean\n* | probability_score":0.13072868, | | ITV station at 1.00 am a | | | **Main character:** Howard Spitz, | "severity":1,"severity_score":0.07030385}, | | couple of nights ago. | | | a children's author who hates... | {"category":3,"probability":2," ... | | This might be a strange... | | +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
The results include the following columns:
generated_text
: the generated text.safety_ratings
: the safety attributes, along with information about whether the content is blocked due to one of the blocking categories. For more information about the safety attributes, see Vertex PaLM API.ml_generate_text_status
: the API response status for the corresponding row. If the operation was successful, this value is empty.prompt
: the prompt that is used for the sentiment analysis.- All of the columns from the
bigquery-public-data.imdb.reviews
table.
Optional: Instead of manually parsing the JSON returned by the function, as you did in the previous step, use the
flatten_json_output
argument to return the generated text and the safety attributes in separate columns.In the query editor, run the following statement:
SELECT * FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT('Extract the key words from the text below: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens, TRUE AS flatten_json_output));
The output is similar to the following, with non-generated columns omitted for clarity:
+----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ml_generate_text_llm_result | ml_generate_text_rai_result | ml_generate_text_status | prompt | ... | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ## Keywords: | [{"category":1,"probability":1, | | Extract the key words from | | | | "probability_score":0.29391089,"severity":1, | | the text below: I had to | | | * **Negative sentiment:** | "severity_score":0.15584777},{"category":2, | | see this on the British | | | "terribly bad acting", "dumb | "probability":1,"probability_score": | | Airways plane. It was | | | story", "not even a kid would | 0.061311536,"severity":1,"severity_score": | | terribly bad acting and | | | enjoy this", "switch off" | 0.10320505},{"category":3,"probability":2, | | a dumb story. Not even | | | * **Context:** "British | "probability_score":0.60340... | | a kid would enjoy this... | | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+ | ## Key words: | [{"category":1,"probability":1, | | Extract the key words from | | | | "probability_score":0.16968086,"severity":1, | | the text below: This is | | | * **Movie:** The Real Howard Spitz | "severity_score":0.13386749},{"category":2, | | a family movie that was | | | * **Genre:** Family movie | "probability":1,"probability_score": | | broadcast on my local | | | * **Broadcast:** ITV, 1.00 | 0.14841709,"severity":1,"severity_score": | | ITV station at 1.00 am a | | | am | 0.062674366},{"category":3,"probability":1, | | couple of nights ago. | | | - ... | "probability_score":0.38116196,... | | This might be a strange... | | +----------------------------------------+----------------------------------------------+-------------------------+----------------------------+-----+
The results include the following columns:
ml_generate_text_llm_result
: the generated text.ml_generate_text_rai_result
: the safety attributes, along with information about whether the content is blocked due to one of the blocking categories. For more information about the safety attributes, see Vertex PaLM API.ml_generate_text_status
: the API response status for the corresponding row. If the operation was successful, this value is empty.prompt
: the prompt that is used for the keyword extraction.- All of the columns from the
bigquery-public-data.imdb.reviews
table.
Perform sentiment analysis
Perform sentiment analysis on IMDB movie reviews by using the remote model and the ML.GENERATE_TEXT
function:
In the Google Cloud console, go to the BigQuery page.
In the query editor, run the following statement to perform sentiment analysis on five movie reviews:
SELECT ml_generate_text_result['candidates'][0]['content'] AS generated_text, ml_generate_text_result['candidates'][0]['safety_ratings'] AS safety_ratings, * EXCEPT (ml_generate_text_result) FROM ML.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT( 'perform sentiment analysis on the following text, return one the following categories: positive, negative: ', review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
The output is similar to the following, with non-generated columns omitted for clarity:
+--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | generated_text | safety_ratings | ml_generate_text_status | prompt | ... | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Sentiment Analysis: | [{"category":1,"probability":1, | | perform sentiment analysis | | | Negative \n\nThis text expresses a | "probability_score":0.33895186, | | on the following text, | | | strongly negative sentiment towards the | "severity":1,"severity_score":0.10521054}, | | return one the following | | | movie. Here's why:\n\n* **Negative | {"category":2,"probability":1, | | negative: I had to see | | | like \"terribly,\" \"dumb,\" and | "probability_score":0.069163561,"severity" | | this on the British | | | \"not even\" to describe the acting... | :1,"severity_score":0.093512312},... | | Airways plane. It was... | | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+ | {"parts":[{"text":"## Sentiment Analysis: | [{"category":1,"probability":1, | | perform sentiment analysis | | | Negative \n\nThis review expresses a | "probability_score":0.35644665, | | on the following text, | | | predominantly negative sentiment towards | "severity":1,"severity_score":0.15253653}, | | return one the following | | | the movie \"The Real Howard Spitz.\" | {"category":2,"probability":1, | | categories: positive, | | | Here's why:\n\n* **Criticism of the film's | "probability_score":0.063948415,"severity" | | negative: This is a family | | | premise:** The reviewer finds it strange | :1,"severity_score":0.047249716}, | | movie that was broadcast | | | that a film about a children's author... | {"category":3,"probability":2,... | | on my local ITV station... | | +--------------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
The results include the same columns documented for Perform keyword extraction.
Clean up
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.